
Copyright (C) 1993, 1996 The Workflow Management Coalition

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior written permission of the Workflow Management Coalition except that reproduction,
storage or transmission without permission is permitted if all copies of the publication (or portions
thereof) produced thereby contain a notice that the Workflow Management Coalition and its members are
the owners of the copyright therein.

This Specification has been authored by Workflow Management Coalition members.

The Workflow Management Coalition Specification

Workflow Management Coalition
Workflow Client Application (Interface 2)

Application Programming Interface
(WAPI)

Specification

Document Number WFMC-TC-1009

15-May-96
Version 1.1

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 2 of 2
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Coalition
Avenue Marcel Thiry 204

1200 Brussels
Belgium

Tel: +32 2 774 96 33
Fax: +32 2 774 96 90

Email: 100113.1555@compuserve.com
or WfMC@eyam.be

www: http://www.aiai.ed.ac.uk/wfmc
or http://www.arms.ohio-state.edu/wfmc

The "WfMC" logo and "Workflow Management Coalition" name are service marks of the
Workflow Management Coalition.

Neither the Workflow Management Coalition nor any of its members make any warranty
of any kind whatsoever, express or implied, with respect to the Specification, including as
to non-infringement, merchantability or fitness for a particular purpose. This Specification
is provided “as is”.

First printing, November 1995
Second printing, version 1.1, May 1996

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 3 of 3
Copyright © 1993, 1996, The Workflow Management Coalition

1. PURPOSE..5

2. AUDIENCE ...5

3. OVERVIEW..5

3.1 Design Philosophy...6
3.2 Design Assumptions..6
3.3 Design Objectives..6
3.4 Defined Terms and Abbreviations ...6
3.5 Reference Documents ..6
3.6 Conformance...7
3.7 WAPI Naming Conventions ..7

4. WAPI DATA TYPES ..8

4.1 Basic WAPI Data Types ..8
4.2 Other WAPI Data Types..8
4.3 Attributes ..12

5. WAPI ERROR RETURN CODES ...13

6. WAPI DESCRIPTIONS..15

6.1 WAPI Connection Functions ...15
6.1.1 WMConnect..18
6.1.2 WMDisconnect ...19

6.2 WAPI Process Control Functions...20
6.2.1 WMOpenProcessDefinitionsList ...20
6.2.2 WMFetchProcessDefinition ..22
6.2.3 WMCloseProcessDefinitionsList ...23
6.2.4 WMOpenProcessDefinitionStatesList..24
6.2.5 WMFetchProcessDefinitionState ..25
6.2.6 WMCloseProcessDefinitionStatesList ...26
6.2.7 WMChangeProcessDefinitionState ...27
6.2.8 WMCreateProcessInstance ...28
6.2.9 WMStartProcess ...29
6.2.10 WMTerminateProcessInstance..30
6.2.11 WMOpenProcessInstanceStatesList ..31
6.2.12 WMFetchProcessInstanceState ...32
6.2.13 WMCloseProcessInstanceStatesList ..33
6.2.14 WMChangeProcessInstanceState..34
6.2.15 WMOpenProcessInstanceAttributesList ..35
6.2.16 WMFetchProcessInstanceAttribute ...36
6.2.17 WMCloseProcessInstanceAttributesList ..37
6.2.18 WMGetProcessInstanceAttributeValue ...38
6.2.19 WMAssignProcessInstanceAttribute..39

6.3 WAPI Activity Control Functions..40
6.3.1 WMOpenActivityInstanceStatesList ..40
6.3.2 WMFetchActivityInstanceState ...41
6.3.3 WMCloseActivityInstanceStatesList ..42
6.3.4 WMChangeActivityInstanceState ..43
6.3.5 WMOpenActivityInstanceAttributesList ..44
6.3.6 WMFetchActivityInstanceAttribute ...45

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 4 of 4
Copyright © 1993, 1996, The Workflow Management Coalition

6.3.7 WMCloseActivityInstanceAttributesList ..46
6.3.8 WMGetActivityInstanceAttributeValue ...47
6.3.9 WMAssignActivityInstanceAttribute..48

6.4 WAPI Process Status Functions...49
6.4.1 WMOpenProcessInstancesList ..50
6.4.2 WMFetchProcessInstance...51
6.4.3 WMCloseProcessInstancesList..52
6.4.4 WMGetProcessInstance..53

6.5 WAPI Activity Status Functions ..54
6.5.1 WMOpenActivityInstancesList ..55
6.5.2 WMFetchActivityInstance...56
6.5.3 WMCloseActivityInstancesList..57
6.5.4 WMGetActivityInstance ..58

6.6 WAPI Worklist Functions ...59
6.6.1 WMOpenWorkList ..60
6.6.2 WMFetchWorkItem...61
6.6.3 WMCloseWorkList..62
6.6.4 WMGetWorkItem..63
6.6.5 WMCompleteWorkItem...64
6.6.6 WMReassignWorkItem..65
6.6.7 WMOpenWorkItemAttributesList ..66
6.6.8 WMFetchWorkItemAttribute ...67
6.6.9 WMCloseWorkItemAttributesList..68
6.6.10 WMGetWorkItemAttributeValue ...69
6.6.11 WMAssignWorkItemAttribute..70

6.7 WAPI Administration Functions ...71
6.7.1 WMChangeProcessInstancesState ..71
6.7.2 WMChangeActivityInstancesState ..73
6.7.3 WMTerminateProcessInstances ..74
6.7.4 WMAssignProcessInstancesAttribute ..75
6.7.5 WMAssignActivityInstancesAttribute ..76
6.7.6 WMAbortProcessInstances ...77
6.7.7 WMAbortProcessInstance...78

7. APPENDIX A ..79

7.1 Additional API Areas ..79
7.1.1 WFM Data API calls ..79
7.1.2 Ad hoc activities ...79
7.1.3 Administration and Maintenance..79
7.1.4 Names and Roles ..79

7.2 Additional Issues...79
7.2.1 Error reporting and control..79
7.2.2 Synchpoint processing ..79
7.2.3 Security ..80
7.2.4 Locking ..80
7.2.5 Process Integrity ..80

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 5 of 5
Copyright © 1993, 1996, The Workflow Management Coalition

1. Purpose

The purpose of this document is to specify standard workflow management Application Programming
Interfaces (API) which can be supported by WFM products. These API calls provide for a consistent
method of access to WFM functions in cross-product WFM Engines. The API set is named Workflow
Application Programming Interfaces (WAPI).

This document defines the API specifications of the Workflow Management Coalition for building
workflow-enabled applications (Interface 2 in the Workflow Reference Model).

This document is directly associated to the documents:

• Workflow Management Coalition Glossary
• Workflow Management Coalition Interface 2 WAPI Naming Conventions

The three documents constitute the complete specification.

2. Audience
The intended audience of this document includes all participants in the workflow industry. Comments
should be addressed to the Workflow Management Coalition.

3. Overview
The support of these interfaces in WFM products allow the implementation of front-end applications
which need to access WFM Engine functions (Workflow services). Such implementations might be
written by WFM exploiters or ISVs. Implementation of these API calls are also intended to allow the
workflow applications to be adjusted to operate with different WFM Engines using this common API
interface.

These API calls should allow a WFM exploiter to have a single end user interface and functions set
regardless of the number of WFM products existing in an installation. WAPI calls may be implemented in
a number of languages. The first Coalition specification will be for the ‘C’ language. The API operates
as CALLS. No assumption is may regarding the underlying implementation of the CALLS in a particular
WFM product implementation. The WAPI calls are for use at run-time. That is, when processes are
executing or are to be executed. They would normally be used by workflow applications (e.g. worklist
handlers, cooperating applications) but may also be used by a WFM Engine when it wishes to interact
with another WFM product within the context of the API functions.

Through its set of functions, the WAPI provides a set of workflow services that a Workflow Enactment
Service provides. The WAPI does not assume any specific user interface, but rather it specifically
assumes that the user interface of the workflow enabled application, that uses these services, provides its
own user interface, that depends solely on the application development environment facilities where it is
implemented.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 6 of 6
Copyright © 1993, 1996, The Workflow Management Coalition

The WFM Engine functions can broadly be classified in the following areas:

• WAPI Connection Functions
• WAPI Process Control Functions
• WAPI Activity Control Functions
• WAPI Process Status Functions
• WAPI Activity Status Functions
• WAPI Worklist Functions
• WAPI Administration Functions

3.1 Design Philosophy

There are a number of design assumptions and constraints that provide a framework or philosophy for the
definition of this specification.

3.2 Design Assumptions

Incremental Set of Functions. It is assumed that as the WFM technology evolves, likewise the
specifications defined in this document will evolve and will have additions in subsequent versions
of this document.

• Strings are defined with buffer sizes allocated in bytes. Strings are assumed to be zero terminated.
• The workflow engine may have security restrictions that may cause an error to be returned to a user

for some of the API calls.
• The specific calls to change state have to be supported by all vendors. The generic state changes are

reserved for vendor specific states. In the future, it is expected that a common set of states will
evolve.

• Each process definition must have a unique ID within an administrative scope.
• Each process instance must have a unique ID within an administrative scope.
• Each activity instance must have a unique ID within a process instance.
• Each work item must have a unique ID within a process instance.
• Process Instance ID is unique to the workflow engines from which it is available. It is the

responsibility of the workflow engine to ensure a unique identifier within this scope.

3.3 Design Objectives

Ease of Implementation. The API specification must be easy to implement by a wide range of
vendors. This also implies that the specification will be able to be implemented by
multiple vendors in a reasonably short period of time.

3.4 Defined Terms and Abbreviations

The terms used in this document are defined in the WFM Coalition Glossary.

3.5 Reference Documents

The following documents are associated with this document and should be used as a reference.
• WFM Coalition Reference Model
• WFM Coalition Glossary
• WFM Coalition WAPI Naming Conventions

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 7 of 7
Copyright © 1993, 1996, The Workflow Management Coalition

3.6 Conformance

A vendor can not claim conformance to this or any other WfMC specification unless specifically
authorized to make that claim by the WfMC. The WfMC grants this permission only upon the
verification of the particular vendor’s implementation of the published specification, according to the
conformance requirements and applicable test procedures defined by the WfMC.

3.7 WAPI Naming Conventions

The Working group has proposed a set of standards for handling the naming conventions of the different
implementation of the Workflow API. These naming conventions standards are described in the
document Workflow Management Coalition Interface 2 WAPI Naming Conventions (Document Number
WFMC-TC-1013).

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 8 of 8
Copyright © 1993, 1996, The Workflow Management Coalition

4. WAPI Data Types
This section describes the WAPI data types. These data types are used in the WAPI calls as input and
output parameters.

4.1 Basic WAPI Data Types

This subsection contains definitions of the basic Workflow Management types that are operating system or
platform dependent.

typedef char WMTInt8;
typedef short WMTInt16;
typedef long WMTInt32;
typedef unsigned char WMTUInt8;
typedef unsigned short WMTUInt16;
typedef unsigned long WMTUInt32;

typedef WMTInt8 WMTText;
typedef WMTText *WMTPText;
typedef WMTInt8 *WMTPInt8;
typedef WMTInt16 *WMTPInt16;
typedef WMTInt32 *WMTPInt32;

typedef WMTInt8 WMTBoolean;
typedef WMTUInt8 *WMTPointer;
typedef WMTText *WMTPPrivate;

#define WMNULL ((WMTPointer)0)
#define WMFalse 0
#define WMTrue (!WMFalse)

4.2 Other WAPI Data Types

This subsection contains definitions of the Workflow Management types that are specific to the structures
and objects defined in this specification.

Strings in this specification, are assumed to be zero terminated. The maximum string length for names,
keywords and identifiers in this specification is 63 characters hosted in a 64 byte text array. The
following macro definition specifies this typical size:

#define NAME_STRING_SIZE 64

All strings in this specification are defined as text arrays, such as:

WMTText user_identification[NAME_STRING_SIZE];

Given this, in the example above the string can include up to a maximum of 63 real characters.

In some other cases, the fixed size structures for data reference and unique ids are also defined through
the following macro definitions:

#define UNIQUE_ID_SIZE 64

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 9 of 9
Copyright © 1993, 1996, The Workflow Management Coalition

All WAPI function calls have a uniform error return datatype:

typedef struct
{

WMTInt16 main_code;
WMTInt16 sub_code;

} WMTErrRetType;

This data type is shared among all API calls. All other data types are shown along with the WAPI
description for each individual call.

This error return datatype is a Int32 word that has two Int16 elements for error returns. The main_code
element contains the main error return code, while the sub_code element contains a code that further
specifies the nature of the error. For example, the main_code error code WM_INVALID_PROCESS_INSTANCE
(see Error Return Codes below), would include in its sub_code set of codes a further, more detailed reason
why the process instance is invalid.

This specification assumes that the Coalition will specify a subset of the main_code codes, leaving for
vendor specific implementation the remaining main_code codes and the set of sub_code codes to provide
extensibility and specialization of error codes.

typedef struct
{

WMTText user_identification[NAME_STRING_SIZE];
// The identification of the workflow

participant on whose behalf the Workflow
Application will be operating. The
value specified may represent a human, a
device, etc. This identification is
normally used for security checking,
accounting, etc.

WMTText password[NAME_STRING_SIZE];
WMTText engine_name[NAME_STRING_SIZE];

// The identification of the WFM Engine to
whom the subsequent API calls are to be
directed. This information would not be
required for some WFM products in the
normal case. However, it is required for
those Workflow Applications which
interact with multiple WFM Engines. This
would be a symbolic name which is
resolved through a lookup facility.

WMTText scope[NAME_STRING_SIZE];
// Identification of scope for the

application. If scope is not relevant,
then this field would be empty and
ignored.

}WMTConnectInfo;

typedef WMTConnectInfo *WMTPConnectInfo;

typedef struct
{

WMTUInt32 session_id; // locally unique ID for the session
WMTPPrivate pprivate; // pointer to a private structure containing

vendor specific information.
}WMTSessionHandle;

typedef WMTSessionHandle *WMTPSessionHandle;

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 10 of 10
Copyright © 1993, 1996, The Workflow Management Coalition

typedef struct
{

WMTInt32 filter_type; // Includes basic types and SQL String
WMTInt32 filter_length; // Length (in bytes) of value
WMTText attribute_name [NAME_STRING_SIZE]
WMTUInt32 comparison; // one of: <, >, =, !=, <=, <=
WMTPText filter_string;

}WMTFilter;

typedef WMTFilter *WMTPFilter;

// The first 255 filter types will be reserved. These will be used for filtering on
attributes of process control data and process relevant data. The specific code values
for these codes are included in the WFM Coalition Interface 2 WAPI Naming Conventions
specification document.

// In this specification there are two types of filters. One type is useful for
comparisons with and between attribute values. In this case, the filter_string
includes the attribute value that the attribute is compared against. The second type
is a more general mechanism in which the filter_string represents the whole argument
(typically a full SQL argument). If filter_type is a SQL string, the filter_string
will point to a SQL clause with the syntax of a WHERE clause in the SQL 92 standard
language specification.

typedef struct
{

WMTUInt32 query_handle;
}WMTQueryHandle;

typedef WMTQueryHandle *WMTPQueryHandle;

typedef struct
{

WMTText wf_participant[NAME_STRING_SIZE];
}WMTWflParticipant;

typedef WMTWflParticipant *WMTPWflParticipant;

typedef struct
{

WMTText proc_def_id[UNIQUE_ID_SIZE];
}WMTProcDefID;

typedef WMTProcDefID *WMTPProcDefID;

typedef struct
{

WMTText activity_id[NAME_STRING_SIZE];
}WMTActivityID;

typedef WMTActivityID *WMTPActivityID;

typedef struct
{

WMTText proc_def_state[NAME_STRING_SIZE];
} WMTProcDefState;

typedef WMTProcDefState *WMTPProcDefState; // pointer to a 63-byte string

typedef struct
{

// This is the minimum list of elements at this time. Future versions to provide
extensibility for this structure.

WMTText process_name[NAME_STRING_SIZE];
WMTProcDefID proc_def_id;
WMTProcDefState state;

} WMTProcDef;

typedef WMTProcDef *WMTPProcDef;

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 11 of 11
Copyright © 1993, 1996, The Workflow Management Coalition

typedef struct
{

WMTText proc_inst_id[UNIQUE_ID_SIZE];
}WMTProcInstID;

typedef WMTProcInstID *WMTPProcInstID;

typedef struct
{

WMTText proc_inst_state[NAME_STRING_SIZE];
} WMTProcInstState;

typedef WMTProcInstState *WMTPProcInstState; // pointer to a 63-byte string

typedef struct
{

// This is the minimum list of elements at this time. Future versions to provide
extensibility for this structure.

WMTText process_name[NAME_STRING_SIZE];
WMTProcInstID proc_inst_id;
WMTProcDefID proc_def_id;
WMTProcInstState state;
WMTInt32 priority;
WMTWflParticipant proc_participants[20];

//up to 20 63 character long participant identifiers
} WMTProcInst;

typedef WMTProcInst *WMTPProcInst;

typedef struct
{

WMTText activity_inst_id[UNIQUE_ID_SIZE];
}WMTActivityInstID;

typedef WMTActivityInstID *WMTPActivityInstID;

typedef struct
{

WMTText activity_inst_state[NAME_STRING_SIZE];
} WMTActivityInstState;

typedef WMTActivityInstState *WMTPActivityInstState;

typedef struct
{

// This is the minimum list of elements at this time. Future versions to provide
extensibility for this structure.

WMTText activity_name[NAME_STRING_SIZE];
WMTActivityInstID activity_inst_id;
WMTProcInstID proc_inst_id;
WMTActivityInstState state;
WMTInt32 priority;
WMTWflParticipant activity_participants[10];

//up to 10 63 character long participant identifiers
} WMTActivityInst;

typedef WMTActivityInst *WMTPActivityInst;

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 12 of 12
Copyright © 1993, 1996, The Workflow Management Coalition

typedef struct
{

WMTText work_item_id[UNIQUE_ID_SIZE];
}WMTWorkItemID;

typedef WMTWorkItemID *WMTPWorkItemID;

typedef struct
{

// This is the minimum list of elements at this time. Future versions to provide
extensibility for this structure.

WMTText workitem_name[NAME_STRING_SIZE];
WMTWorkItemID workitem_id;
WMTActivityInstID activity_inst_id;
WMTProcInstID proc_inst_id;
WMTInt32 priority;
WMTWflParticipant participant;

} WMTWorkItem;

typedef WMTWorkItem *WMTPWorkItem;

4.3 Attributes

This specification does not make any assumption about the binding that workflow applications will make
of retrieved attributes and their values. It is up to the specific application to manage this binding. The
API manages attributes as a set of four elements:

WMTText attribute_name[NAME_STRING_SIZE];
WMTInt32 attribute_type; // type of the attribute
WMTInt32 attribute_length; // length of the attribute value
WMTPText pattribute_value; // pointer to the attribute value

All API calls in this specification that deal with attributes, take each individual element as separate
parameter for the call.

The following type definitions are used for attribute name:

typedef WMTText WMTAttrName[NAME_STRING_SIZE];
typedef WMTAttrName *WMTPAttrName;

These attributes are of the kind called Process Control and Process Relevant Data. Some attributes of
process instances, activity instances and work items could be: priority, state, start_time, description,
instance_name, workflow_participant.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 13 of 13
Copyright © 1993, 1996, The Workflow Management Coalition

5. WAPI Error Return Codes
This section describes the minimal set of WAPI error return codes. These error codes correspond to the
main_code element of the WMTErrRetType datatype defined above. The specific code values for these
codes are included in the WFM Coalition WAPI Naming Conventions specification document.

The minimal set of main_code error return codes are:

WM_SUCCESS

Indicates that the API call completed successfully.

WM_CONNECT_FAILED

Indicates that the WMConnect call failed.

WM_INVALID_PROCESS_DEFINITION

Indicates that the process definition ID that was passed as parameter to an API call was
not valid, or it was not recognized by the servicing workflow engine.

WM_INVALID_ACTIVITY_NAME

Indicates that the activity name that was passed as parameter to an API call was not
valid, or was not recognized by the servicing workflow engine.

WM_INVALID_PROCESS_INSTANCE

Indicates that the process instance ID that was passed as parameter to an API call was
not valid, or was not recognized by the servicing workflow engine.

WM_INVALID_ACTIVITY_INSTANCE

Indicates that the process instance ID that was passed as parameter to an API call was
not valid, or was not recognized by the servicing workflow engine.

WM_INVALID_WORKITEM

Indicates that the work item ID that was passed as parameter to an API call was not
valid, or was not recognized by the servicing workflow engine.

WM_INVALID_ATTRIBUTE

Indicates that the attribute that was passed as parameter to an API call was not valid, or
was not recognized by the servicing workflow engine.

WM_ATTRIBUTE_ASSIGNMENT_FAILED

Indicates that the workflow engine was not able to complete the attribute assignment
requested.

WM_INVALID_STATE

Indicates that a state was not valid, or was not recognized by the servicing workflow
engine.

WM_TRANSITION_NOT_ALLOWED

Indicates that the state transition requested was not valid, or was not recognized by the
servicing workflow engine.

WM_INVALID_SESSION_HANDLE

Indicates that the session ID that was passed as parameter to an API call was not valid,
or was not recognized by the servicing workflow engine.

WM_INVALID_QUERY_HANDLE

Indicates that the query handle ID that was passed as parameter to an API call was not
valid, or was not recognized by the servicing workflow engine.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 14 of 14
Copyright © 1993, 1996, The Workflow Management Coalition

WM_INVALID_SOURCE_USER

Indicates that the participant “source user” that was passed as parameter to an API call
was not valid, or was not recognized by the servicing workflow engine.

WM_INVALID_TARGET_USER

Indicates that the participant “target user” that was passed as parameter to an API call
was not valid, or was not recognized by the servicing workflow engine.

WM_INVALID_FILTER

Indicates that the filter structure or values that were passed as parameter to an API call
was not valid, or was not recognized by the servicing workflow engine.

WM_LOCKED

Reserved for situations in which the servicing workflow engine implements “locking” of
workflow entities (process definitions, process instances, activities, work items, etc.) to
indicate that the entity is locked at the moment in which its access is requested.

WM_NOT_LOCKED

Reserved for situations in which the servicing workflow engine implements “locking” of
workflow entities (process definitions, process instances, activities, work items, etc.) to
indicate that the entity is not locked at the moment in which its access is requested.

WM_NO_MORE_DATA

Indicates that a fetch query call has reached the end of the list of valid entities to be
returned. This error return code is used to implement queries of lists of workflow
entities, it indicates that all the entities of the list that matched the selection criterion
have already been returned.

WM_INSUFFICIENT_BUFFER_SIZE

Indicates that the buffer size that was passed to an API call is insufficient to hold the
data that it is supposed to receive.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 15 of 15
Copyright © 1993, 1996, The Workflow Management Coalition

6. WAPI Descriptions
This section describes the WAPI calls. They are grouped as follows:

• WAPI Connection Functions
• WAPI Process Control Functions
• WAPI Activity Control Functions
• WAPI Process Status Functions
• WAPI Activity Status Functions
• WAPI Worklist Functions
• WAPI Administration Functions

The specification of the WAPI calls that follows includes a specification of parameters with
indications of the direction of data passing:

in for parameters with data being passed to the API from the calling application
out for parameters with data being passed from the API to the calling application.

It should be noted, that in the “C” language interface, parameters that are specified as out require
a pointer to be passed from the calling application to the API. The API in turn will return the
appropriate data in the space pointed to by the pointer. The specification of these in and out
parameters is provided to clarify the specific purpose of these parameters in the calls.

6.1 WAPI Connection Functions

Connected/Connectedless Overview

The Coalition WMConnect /WMDisconnect API commands are intended to bound a set of related work
by the application using them. When issued, the WMConnect returns a handle whose value is used on all
other Coalition API calls. The handle value is unique and relates API calls which are issued between a
WMConnect /WMDisconnect pair instance. The WMConnect command allows information to be
supplied once and to remain valid until a WMDisconnect occurs.

Information supplied during the WMConnect (see the ConnectInfo structure in the WMConnect call)
includes identification information relating to who/what is requesting services from the WFM Engine for
use by an authentication service. The structure of the session handle that is returned by the WMConnect
call is a pointer to a structure that contains a session ID and another structure pointer containing vendor
specific information. (See the Session Handle structure in the WMConnect call.)

For those workflow servers that establish a connection, the session ID and the pointer to the vendor
specific information would be returned by the workflow engine. For those workflow servers that do not
establish a connection, the session ID would be set to 0, and a pointer to the connection information that
was passed in by the user will be stored in the private structure contained in the session handle structure.

Operation between the API and the Engine

The construction of the Coalition API calls are intended to have little impact on the operational structure
of how a WFM product supports them. The API calls are considered to be protocol neutral in that once
the API boundary is crossed, different types of mechanisms may be employed to deliver the request to the

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 16 of 16
Copyright © 1993, 1996, The Workflow Management Coalition

WFM engine. A particular WFM product's method of interacting between the API calls and the WFM
Engine functions may be RPC, conversational, messaging (connectedless) or others.

If a messaging mechanism is used by a WFM product, the receipt of a WMConnect may result in the
determination of what messaging queue is to be used for interaction between its API support and the
WFM engine functions, plus establishing control information to link that queue to subsequent API calls
which use a particular handle. If the WFM engine is remote, it may also send a setup type of message to
the engine.

If a conversational mechanism is used by a WFM product, and the WFM engine is remote, the receipt of a
WMConnect may result in the establishment of a communications session between the code supporting
the API calls and the WFM engine.

If a data base is being used, one of the results of the WMConnect may be the establishment of a
connection to the appropriate data store facility.

A particular WFM product may choose to accept the WMConnect command, return a handle, and ignore
the fact that it occurred.

The above are examples of possible operations performed by different WFM products in support of a
WMConnect command. Obviously, more are possible.

In some cases, a product will be required to connect a single workstation to multiple WFM engines. It is
possible that multiple WMConnect commands are active concurrently and the subsequent API commands
be directed to the correct WFM engine. The WMConnect command may be used to designate a
particular engine. The handle returned from the WMConnect command may be used on subsequent API
calls to link those which relate to a engine.

The results of a WMDisconnect command is may vary, again depending upon a particular WFM product
implementation. Its purpose is to indicate that the application issuing the preceding API calls will no
longer be accessing the WFM engine functions within the previous context. In some products, upon
receipt of a WMDisconnect command, communications and other resource types may be released.

Application Operation when using the API calls

The operational structure of an application as it relates to the use of the Coalition API calls is affected by
the way the API calls are constructed. The current construction of the Coalition API calls result in the
code segment of the application making the API call to run in blocked mode. That is, the application will
issue an API command and 'wait' for a response from what it perceives as the WFM engine. When
making the API call, the application code segment gives up control to the API and does not regain control
until the API command is satisfied.

Much of the time, the API commands will be issued due to a workflow participant's direction via
the application's End User Interface (EUI). Most of the current API commands are not such that
a workflow participant would be interested in making the request, doing something else, and
then sometime later (via a process/queue/whatever) viewing the real response to the request.
With the request types supported by the API set, it would normally be the case that a workflow
participant would want to see the response to the request as soon as possible.

The API calls could be constructed in such a way to allow the application code segment making the API
call to run in unblocked mode. That is, to make the API call 'immediate return' rather than waiting for
the actual response to the requested action. If this were done, the Coalition would need to define
additional functions to support connectedless mode of operation (in some manner, get the asynchronous
response when it did arrive and get it to the workflow participant).

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 17 of 17
Copyright © 1993, 1996, The Workflow Management Coalition

The WMConnect / WMDisconnect API commands themselves have nothing to do with the ability of an
application to run connected or connectedless as they are now defined.

Synchronous vs Asynchronous Calls

Most API calls in the WAPI call set are synchronous calls. In particular all the query related API calls are
synchronous. Other calls may have some asynchronous behavior in that the call itself will return
synchronously to the caller program, but the work specified by the call may be executed by the Workflow
Engine at a later time, letting the application proceed. This set of API calls will not include any Call-
Back mechanism to synchronize asynchronous calls.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 18 of 18
Copyright © 1993, 1996, The Workflow Management Coalition

6.1.1 WMConnect

NAME

WMConnect - Connect to the WFM Engine for this series of interactions

DESCRIPTION

The WMConnect command informs the WFM Engine that other commands will be originating
from this source.

WMTErrRetType WMConnect (
in WMTPConnectInfo pconnect_info,
out WMTPSessionHandle psession_handle)

Argument Description

pconnect_info Pointer to structure containing the information required to create a connection.
psession_handle Pointer to a structure containing information which can be passed to the WFM

Engine on all subsequent API calls which would identify interactions within the
WMConnect / WMDisconnect bounds, that define a participant’s session
interaction with the Engine. These handles are opaque so that in connectedless
environments the handles include participants identities and passwords rather
than session identification. There will be a special value for a handle to
indicate failure of the function.

ERROR RETURN VALUE

WM_SUCCESS
WM_CONNECT_FAILED

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 19 of 19
Copyright © 1993, 1996, The Workflow Management Coalition

6.1.2 WMDisconnect

NAME

WMDisconnect - Disconnect from the WFM Engine for this series of interactions

DESCRIPTION

The WMDisconnect command tells the WFM Engine that no more API calls will be issued from this
source using the named handle. The WFM Engine could discard state data being held or take other
closure actions.

WMTErrRetType WMDisconnect (
in WMTPSessionHandle psession_handle)

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 20 of 20
Copyright © 1993, 1996, The Workflow Management Coalition

6.2 WAPI Process Control Functions

Process Control Functions can be defined as those which change the operational state of one or more
process instances. These API calls are intended for use by the WFM end user application. However, some
of the API calls, or parameters within some of the API calls, may affect multiple users and would
normally be restricted to the use of a process administrator.

6.2.1 WMOpenProcessDefinitionsList

NAME

WMOpenProcessDefinitionsList - Specifies and opens the query to produce a list of all process
definitions that meet the selection criterion of the filter.

DESCRIPTION

This command may also be used by a manager or process administrator to get a list of process definitions
so they may view which processes are startable by particular persons. This command directs the WFM
Engine to open the query to provide a list of process definitions which are available to a particular
workflow participant, some of which may be startable by the participant. It is assumed that not all
processes in an organization may be started by all workflow participants. One of the uses of this API is to
allow a workflow participant to view which processes he/she can start with the expectation that the next
action by the workflow participant would be to pick one to be started.

This command will return a query handle for a list of process definitions that match the specified value for
the attribute. The command will also return, optionally, the total count of definitions available. If the
count is requested and the implementation does not support it, the command will return a pcount value of
-1. If pproc_def_filter is NULL, then the function, with the corresponding fetch calls will return the
list of ALL process definitions.

(Note: This API does not change the state of process or activity instances per the definition above of
Process Control Functions. It is included in this section because it might normally lead to the execution of
other API calls which would cause operational state changes.)

WMTErrRetType WMOpenProcessDefinitionsList (
in WMTPSessionHandle psession_handle,
in WMTPFilter pproc_def_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_filter Filter associated with the process definition.
count_flag Boolean flag that indicates if the total count of definitions should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of process definitions that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 21 of 21
Copyright © 1993, 1996, The Workflow Management Coalition

REQUIREMENTS

No requirements are assumed to exist with regard to the type of process model.

No requirements are assumed to exist with regard to how workflow participant’s are identified within the
WFM Engine.

RATIONALE FOR API

This command and the corresponding fetch calls allows a workflow participant to retrieve the
process definition ids which a workflow participant is authorized to start. They might be used in
conjunction with the WMCreateProcessInstance and WMStartProcess API calls to start a
particular named process.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 22 of 22
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.2 WMFetchProcessDefinition

NAME

WMFetchProcessDefinition - Returns the next process definition from the set of process definitions that
met the selection criterion stated in the WMOpenProcessDefinitionsList call.

DESCRIPTION

This command directs the WFM Engine to provide one process definition from the list of process
definitions which are available to a particular workflow participant, some of which may be startable by the
participant. It is assumed that not all processes in an organization may be started by all workflow
participants. One of the uses of this API is to allow a workflow participant to view which processes he/she
can start with the expectation that the next action by the workflow participant would be to pick one to be
started. This fetch function, as well as all other fetch functions in this API, will return subsequent items
after every call, one at a time. The fetch process is complete when the function returns the error
WM_NO_MORE_DATA. The sort order in which the items are returned is specific of the workflow engine
servicing the call, no specific order should be assumed.

WMTErrRetType WMFetchProcessDefinition (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPProcDef pproc_def_buf_ptr)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessDefinitionsList query command.
pproc_def_buf_ptr Pointer to a buffer area provided by the client application where the process

definition structure will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 23 of 23
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.3 WMCloseProcessDefinitionsList

NAME

WMCloseProcessDefinitionsList - Closes the query of process definitions.

DESCRIPTION

WMTErrRetType WMCloseProcessDefinitionsList(
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessDefinitionsList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 24 of 24
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.4 WMOpenProcessDefinitionStatesList

NAME

WMOpenProcessDefinitionStatesList - Specifies and opens the query to produce the list of states of the
process definition that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of states for a process definition. The command will
also return, optionally, the total count of definitions available. If the count is requested and the
implementation does not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available states of the process definition that match the
filter criterion, in order to offer this list to the application user. For example, process definitions can be in
states such as disabled (thus disallowing temporarily the creation of new process definitions), or enabled
(thus allowing again the creation of new process definitions based on the named definition). If
pproc_def_state_filter is NULL, then the function, with the corresponding fetch calls will return the
list of ALL states available for the definition.

WMTErrRetType WMOpenProcessDefinitionStatesList (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPFilter pproc_def_state_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTUInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_def_id Pointer to a structure containing the unique process definition ID.
pproc_def_state_filter Filter associated with the process definition state.
count_flag Boolean flag that indicates if the total count of process definition states

should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of states for this process definition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 25 of 25
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.5 WMFetchProcessDefinitionState

NAME

WMFetchProcessDefinitionState - Returns the next process definition state, from the list of states of the
process definition that match the filter criterion.

DESCRIPTION

This command returns a process definition state. This fetch function will return subsequent process
definition states after every call. The fetch process is complete when the function returns the error
WM_NO_MORE_DATA.

WMTErrRetType WMFetchProcessDefinitionState (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPProcDefState pproc_def_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessDefinitionStatesList query command.
pproc_def_state Pointer to a buffer area provided by the client application where the state name

will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 26 of 26
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.6 WMCloseProcessDefinitionStatesList

NAME

WMCloseProcessDefinitionStatesList - Closes the query for process definition states.

DESCRIPTION

WMTErrRetType WMCloseProcessDefinitionStatesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenProcessDefinitionStatesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 27 of 27
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.7 WMChangeProcessDefinitionState

NAME

WMChangeProcessDefinitionState - Changes the state of the named process definition.

DESCRIPTION

This command is defined to allow a process definition to be changed temporarily to a specific state such as
disabled (thus disallowing temporarily the creation of new process definitions), or enabled (thus allowing
again the creation of new process definitions based on the named definition).

WMTErrRetType WMChangeProcessDefinitionState (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPProcDefState pproc_def_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_def_id Pointer to a structure containing a unique process definition ID.
pproc_def_state Pointer to a structure that contains the name of the state to change the

process definition to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each process definition must have a unique ID within an administrative scope.

RATIONALE FOR API

This API allows the possible intervention of a process administrator in a running process. This might be
for the purpose of changing the process definition and having all subsequently created definitions reflect
the new definition.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 28 of 28
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.8 WMCreateProcessInstance

NAME

WMCreateProcessInstance - Create an instance of a previously defined process.

DESCRIPTION

An operational instance of the named process definition will be created by a WFM Engine as the result of
this command. A call to WMStartProcess would then start the process.

To assign attributes to the process instance, you will make multiple calls to
WMAssignProcessInstanceAttribute.

The process instance ID returned by this call is valid and reliable until WMStartProcess is called, at which
time it may be reassigned to a new value.

WMTErrRetType WMCreateProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPText pproc_inst_name,
out WMTPProcInstID pproc_inst_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing a unique process definition ID.
pproc_inst_name Pointer to the name for the process instance created by this call.
pproc_inst_id Pointer to a structure containing the process instance ID created by this call.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION

REQUIREMENTS

No requirements exist with regard to process model type.

RATIONALE FOR API

This API allows a workflow participant to create an instance of a process. It is anticipated that vendor’s
implementations will be of at least 2 types: one in which the creation of a process instance and the
starting of the same are a single functionality and another in which this functionality is separate. The
calls in this API definition are thus separated to accommodate both types of implementation. Vendors
that provide the single functionality will implement the creation and start of a process through the
creation of a temporary (possibly local) proc_inst_id through WMCreateProcessInstance, assign
attributes to it and then call WMStartProcess.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 29 of 29
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.9 WMStartProcess

NAME

WMStartProcess - Start the named process.

DESCRIPTION

The WMStartProcess command directs the WFM Engine to begin executing a process, for which an
instance has been created. When a process is started through this command, the first activity(s) of the
process will be started. The process instance ID returned by this call will be valid for the life of the
process instance.

Note: The programmer needs to maintain the association between the new process instance ID and the
session in order to identify which session they need to connect to for future calls.

WMTErrRetType WMStartProcess (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
out WMTPProcInstID pnew_proc_inst_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the process instance ID returned by the
WMCreateProcessInstance call.

pnew_proc_inst_id Pointer to a structure containing the process instance ID created by this call.
This ID will be valid for the life of the process instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ATTRIBUTE

REQUIREMENTS

The process instance to be started has a unique id within an administrative scope.
No requirements exist with regard to process model type.

RATIONALE FOR API

This API allows a workflow participant to start a created process instance. It is anticipated that vendor’s
implementations will be of at least 2 types: one in which the creation of a process instance and the
starting of the same are a single functionality and another in which this functionality is separate. The
calls in this API definition are thus separated to accommodate both types of implementation. Vendors
that provide the single functionality will implement the creation and start of a process through the
creation of a temporary (possibly local) proc_inst_id through WMCreateProcessInstance, assign
attributes to it and then call WMStartProcess.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 30 of 30
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.10 WMTerminateProcessInstance

NAME

WMTerminateProcessInstance - Terminate a process instance.

DESCRIPTION

This command provides the capability of gracefully terminating a process without aborting the process
instance. Return from this call does not imply that the process instance has terminated, for example, the
process instance could be stopped when currently running activities are complete. The exact behavior of
currently running activities is system dependent.

WMTErrRetType WMTerminateProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id A pointer to a structure that indicates the process instance that you want to
terminate.

ERROR RETURN VALUE

The error return value for this function will include one or more of the following error codes (see Error
Return Codes section):

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE

REQUIREMENTS

None

RATIONALE FOR API

To allow a process instances to be terminated.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 31 of 31
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.11 WMOpenProcessInstanceStatesList

NAME

WMOpenProcessInstanceStatesList - Specifies and opens the query to produce the list of states of the
process instance that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of states for a process instance. The command will also
return, optionally, the total count of states available. If the count is requested and the implementation
does not support it, the command will return a pcount value of -1. The meaning of states is dependent
upon the particular WFM Engine implementation. For example, the process instance can have states such
as suspended or in-progress.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available states of the process instance that match the
filter criterion, in order to offer this list to the application user. If pproc_inst_state_filter is NULL,
then the function, with the corresponding fetch calls will return the list of ALL states available for the
process instance.

WMTErrRetType WMOpenProcessInstanceStatesList (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPFilter pproc_inst_state_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pproc_inst_state_filter Filter associated with the process instance state.
count_flag Boolean flag that indicates if the total count of process instance states

should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of states for this process instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 32 of 32
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.12 WMFetchProcessInstanceState

NAME

WMFetchProcessInstanceState - Returns the next process instance state from the list of states of the
process instance that match the filter criterion.

DESCRIPTION

This command returns a process instance state. This fetch function will return subsequent process
instance states after every call. The fetch process is complete when the function returns the error
WM_NO_MORE_DATA.

WMTErrRetType WMFetchProcessInstanceState (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPProcInstState pproc_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenProcessInstanceStatesList query command.

pproc_inst_state Pointer to a buffer area provided by the client application where the state
name will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 33 of 33
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.13 WMCloseProcessInstanceStatesList

NAME

WMCloseProcessInstanceStatesList - Closes the query for process instance states.

DESCRIPTION

WMTErrRetType WMCloseProcessInstanceStatesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenProcessInstanceStatesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 34 of 34
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.14 WMChangeProcessInstanceState

NAME

WMChangeProcessInstanceState - Changes the state of the named process instance.

DESCRIPTION

This command is defined to allow a process instance to be changed temporarily to a specific state such as
suspended.

Execution of this command will cause the single process instance that is named to be transitioned to a new
state. In this case, the meaning of all states is dependent upon the particular WFM Engine
implementation. This command will set the state attribute of the process instance to a state such as
suspended or in-progress.

WMTErrRetType WMChangeProcessInstanceState (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPProcInstState pproc_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing a unique process instance ID.
pproc_inst_state Pointer to a structure that contains the name of the process state that you

want to change the instance to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique ID within an administrative scope.

RATIONALE FOR API

This API allows the possible intervention of a workflow participant in a running process.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 35 of 35
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.15 WMOpenProcessInstanceAttributesList

NAME

WMOpenProcessInstanceAttributesList - Specifies and opens the query to produce the list of attributes
that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of attributes for a process instance. The command will
also return, optionally, the total count of attributes available. If the count is requested and the
implementation does not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available attributes that can be assigned to the process
instance, in order to offer this list to the application user. Attribute values can be obtained as well
provided that a buffer of enough size is passed in the fetch call. Individual attribute values can also be
retrieved with the WMGetProcessInstanceAttributeValue call. If pproc_inst_attr_filter is NULL,
then the function, with the corresponding fetch calls will return the list of ALL attributes available for the
process instance.

WMTErrRetType WMOpenProcessInstanceAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPFilter pproc_inst_attr_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pproc_inst_attr_filter Filter associated with the process instance attributes.
count_flag Boolean flag that indicates if the total count of process instance

attributes should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of attributes for this process instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 36 of 36
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.16 WMFetchProcessInstanceAttribute

NAME

WMFetchProcessInstanceAttribute - Returns the next process instance attribute from the list of
attributes that match the filter criterion.

DESCRIPTION

This command returns a process instance attribute. This fetch function will return subsequent process
instance attributes after every call. The fetch process is complete when the function returns the error
WM_NO_MORE_DATA. The fetch function will return the attribute value as well in a buffer specified in the
call. If buffer_size is NULL then the attribute value will not be returned. If buffer_size is not large
enough to hold the attribute value then the function will return as much of the attribute value as can be fit
in the buffer. The proper length of the attribute value is available in the attribute_length field. The
application can compare the attribute_length with the buffer_size to determine if the full value was
returned.

WMTErrRetType WMFetchProcessInstanceAttribute (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenProcessInstanceAttributesList query command.

pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.
buffer_size Size of the buffer.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 37 of 37
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.17 WMCloseProcessInstanceAttributesList

NAME

WMCloseProcessInstanceAttributesList - Closes the query for process instance attributes.

DESCRIPTION

WMTErrRetType WMCloseProcessInstanceAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenProcessInstanceAttributesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 38 of 38
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.18 WMGetProcessInstanceAttributeValue

NAME

WMGetProcessInstanceAttributeValue - Returns the value, type and length of a process instance
attribute specified by the proc_inst_id and attribute_name parameters.

DESCRIPTION

This command will return the value of a process instance attribute in the buffer specified in the call.

WMTErrRetType WMGetProcessInstanceAttributeValue (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.
buffer_size Size of the buffer to be filled.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ATTRIBUTE
WM_INSUFFICIENT_BUFFER_SIZE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 39 of 39
Copyright © 1993, 1996, The Workflow Management Coalition

6.2.19 WMAssignProcessInstanceAttribute

NAME

WMAssignProcessInstanceAttribute - Assign the proper attribute to process instance(s)

DESCRIPTION

This command tells the WFM Engine to assign an attribute, change an attribute or to change the value of
an attribute of a process instance.

This command changes the value of an attribute of a process instance. Attributes of process instances are
of the kind called Process Control and Process Relevant Data. These attributes are specified as
quadruplets of name, type, length and value.

WMTErrRetType WMAssignProcessInstanceAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the process instance ID that indicates the
process for which the attribute will be assigned.

pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED

REQUIREMENTS

None

RATIONALE FOR API

For various business reasons, certain pieces of work are required to be handled with particular attributes
(e.g. priority) relative to other pieces of like work. This command allows attributes to be set on those
pieces of work. In some cases, these attributes are determined by the WFM product based upon data
values existing during process execution. The setting of these attributes through the use of this API is
provided to cover the cases where applications set them upon requests from users.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 40 of 40
Copyright © 1993, 1996, The Workflow Management Coalition

6.3 WAPI Activity Control Functions

Activity Control Functions can be defined as those which change the operational state of one or more
activity instances. These API calls are intended for use by the WFM end user. However, some of the API
calls, or parameters within some of the API calls, may affect multiple users and would normally be
restricted to the use of a process administrator.

6.3.1 WMOpenActivityInstanceStatesList

NAME

WMOpenActivityInstanceStatesList - Specifies and opens the query to produce the list of states of the
activity instance that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of states for an activity instance. The command will
also return, optionally, the total count of states available. If the count is requested and the implementation
does not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available states of the activity instance that match the
filter criterion, in order to offer this list to the application user. If pact_inst_state_filter is NULL,
then the function, with the corresponding fetch calls will return the list of ALL states available for the
activity instance.

WMTErrRetType WMOpenActivityInstanceStatesList (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPFilter pact_inst_state_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing a unique process instance ID.
pactivity_inst_id Pointer to a structure containing the unique activity instance ID.
pact_inst_state_filter Filter associated with the activity instance state.
count_flag Boolean flag that indicates if the total count of activity instance states

should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of states for this activity instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 41 of 41
Copyright © 1993, 1996, The Workflow Management Coalition

6.3.2 WMFetchActivityInstanceState

NAME

WMFetchActivityInstanceState - Returns the next activity instance state, from the list of states of the
activity instance that match the filter criterion.

DESCRIPTION

This command returns an activity state. This fetch function will return subsequent activity states after
every call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA.

WMTErrRetType WMFetchActivityInstanceState (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPActivityInstState pactivity_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenActivityInstanceStatesList query command.

pactivity_inst_state Pointer to a buffer area provided by the client application where the state
name will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 42 of 42
Copyright © 1993, 1996, The Workflow Management Coalition

6.3.3 WMCloseActivityInstanceStatesList

NAME

WMCloseActivityInstanceStatesList - Closes the query for activity instance states.

DESCRIPTION

WMTErrRetType WMCloseActivityInstanceStatesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenActivityInstanceStatesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 43 of 43
Copyright © 1993, 1996, The Workflow Management Coalition

6.3.4 WMChangeActivityInstanceState

NAME

WMChangeActivityInstanceState - Changes the state of the named activity instance.

DESCRIPTION

This command directs a WFM Engine to change the state of a single activity instance within a process
instance. This allows the state of one activity instance to be changed, without impacting others in the
process instance.

For example, this command will be used to change the state of an activity instance to suspended. This
command can be used afterwards to change the state of the activity instance back to in-progress. The
implementation documentation will provide the names and semantics of the supported activity states for a
particular implementation.

WMTErrRetType WMChangeActivityInstanceState (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPActivityInstState pactivity_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing a unique process instance ID.
pactivity_inst_id Pointer to structure containing the activity instance ID of the activity

whose state to change.
pactivity_inst_state Pointer to a structure that contains the name of the activity instance state

that you want to change to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique ID within an administrative scope.
Each activity instance must have a unique ID within a process instance.

RATIONALE FOR API

A workflow participant may wish to modify the state attributes associated with a particular
activity instance.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 44 of 44
Copyright © 1993, 1996, The Workflow Management Coalition

6.3.5 WMOpenActivityInstanceAttributesList

NAME

WMOpenActivityInstanceAttributesList - Specifies and opens the query to produce the list of activity
attributes that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of attributes for an activity instance. The command
will also return, optionally, the total count of attributes available. If the count is requested and the
implementation does not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available attributes that can be assigned to the activity
instance, in order to offer this list to the application user. Attribute values can be obtained as well
provided that a buffer of enough size is passed in the fetch call. Individual attribute values can also be
retrieved with the WMGetActivityInstanceAttributeValue call. If pact_inst_attr_filter is NULL,
then the function, with the corresponding fetch calls will return the list of ALL attributes available for the
activity instance.

WMTErrRetType WMOpenActivityInstanceAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPFilter pact_inst_attr_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pactivity_inst_id Pointer to a structure containing the unique activity instance ID.
pact_inst_attr_filter Filter associated with the activity instance attributes.
count_flag Boolean flag that indicates if the total count of activity instance attributes

should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of attributes for this activity instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 45 of 45
Copyright © 1993, 1996, The Workflow Management Coalition

6.3.6 WMFetchActivityInstanceAttribute

NAME

WMFetchActivityInstanceAttribute - Returns the next activity instance attribute from the list of activity
attributes that match the filter criterion.

DESCRIPTION

This command returns a activity instance attribute. This fetch function will return subsequent activity
instance attributes after every call. The fetch process is complete when the function returns the error
WM_NO_MORE_DATA. The fetch function will return the attribute value as well in a buffer specified in the
call. If buffer_size is NULL then the attribute value will not be returned. If buffer_size is not large
enough to hold the attribute value then the function will return as much of the attribute value as can be fit
in the buffer. The proper length of the attribute value is available in the attribute_length field. The
application can compare the attribute_length with the buffer_size to determine if the full value was
returned.

WMTErrRetType WMFetchActivityInstanceAttribute (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenActivityInstanceAttributesList query command.

pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.
buffer_size Size of the buffer.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 46 of 46
Copyright © 1993, 1996, The Workflow Management Coalition

6.3.7 WMCloseActivityInstanceAttributesList

NAME

WMCloseActivityInstanceAttributesList - Closes the query for activity instance attributes.

DESCRIPTION

WMTErrRetType WMCloseActivityInstanceAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenActivityInstanceAttributesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 47 of 47
Copyright © 1993, 1996, The Workflow Management Coalition

6.3.8 WMGetActivityInstanceAttributeValue

NAME

WMGetActivityInstanceAttributeValue - Returns the value, type and length of an activity instance
attribute specified by the pproc_inst_id, pactivity_inst_id and attribute_name parameters.

DESCRIPTION

This command will return the value of an activity instance attribute in the buffer specified in the call.

WMTErrRetType WMGetActivityInstanceAttributeValue (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pactivity_inst_id Pointer to a structure containing the unique activity instance ID.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.
buffer_size Size of the buffer to be filled.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ATTRIBUTE
WM_INSUFFICIENT_BUFFER_SIZE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 48 of 48
Copyright © 1993, 1996, The Workflow Management Coalition

6.3.9 WMAssignActivityInstanceAttribute

NAME

WMAssignActivityInstanceAttribute - Assign an attribute to an activity instance.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, to change an attribute or to change the value
of an attribute of the activity instance within a named process definition.

This command changes the value of the attributes of a activity instance. These attributes of activity
instances are of the kind called Process Control and Process Relevant Data. These attributes are
specified as quadruplets of name, type, length and value.

WMTErrRetType WMAssignActivityInstanceAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pactivity_inst_id Pointer to a structure containing the activity instance identification for which

the attribute will be assigned.
pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 49 of 49
Copyright © 1993, 1996, The Workflow Management Coalition

6.4 WAPI Process Status Functions

The process status functions are intended to provide a view of the work done, work to be done, work
associated with a workflow participant or group of workflow participants, etc. The status queries may be
requested by a normal workflow participant or may be requested by a manager or process administrator
who wishes to view the progress of work within his/her domain.

The status API calls are structured such that they provide views ranging from a view of global work to a
view of work within a single process instance. These views are as follows:

1 All the process instances associated with a
process definition.

WM(Open+Fetch+Close)ProcessInstancesList

2 A view of a single process instance. WMGetProcessInstance

In addition, various filters (parameters) are provided with the calls such that the information returned may
be tailored.

The API functions associated with these API calls are described in this section.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 50 of 50
Copyright © 1993, 1996, The Workflow Management Coalition

6.4.1 WMOpenProcessInstancesList

NAME

WMOpenProcessInstancesList - Specifies and opens the query to produce a list of process
instances that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of process instances that match the specified value for
the attribute. The command will also return, optionally, the total count of instances available. If the
count is requested and the implementation does not support it, the command will return a pcount value of
-1.

This command will be used to set up a wide variety of queries of process instances. For example, this
command will be used to set up the query for a list of completed or suspended process instances. If
pproc_inst_filter is NULL, then the function, with the corresponding fetch calls will return the list of
ALL accessible process instances.

WMTErrRetType WMOpenProcessInstancesList (
in WMTPSessionHandle psession_handle,
in WMTPFilter pproc_inst_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_filter Pointer to a structure containing the information for this request.
count_flag Boolean flag that indicates if the total count of process instances should be

returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of process instances that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER

REQUIREMENTS

None

RATIONALE FOR API

The requester of the information needs to know what work of a particular type is in process or needs to
know what work has completed.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 51 of 51
Copyright © 1993, 1996, The Workflow Management Coalition

6.4.2 WMFetchProcessInstance

NAME

WMFetchProcessInstance - Returns the next process instance from the list of process instances
that met the selection criterion stated in the corresponding WMOpenProcessInstancesList call.

DESCRIPTION

This command returns a process instance. This fetch function will return subsequent process instances
after every call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA.

WMTErrRetType WMFetchProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPProcInst pproc_inst_buf_ptr)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenProcessInstancesList query command.

pproc_inst_buf_ptr Pointer to a buffer area provided by the client application where the set of
process instances will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 52 of 52
Copyright © 1993, 1996, The Workflow Management Coalition

6.4.3 WMCloseProcessInstancesList

NAME

WMCloseProcessInstancesList - Closes the query of process instances.

DESCRIPTION

This command will close the query of process instances that match the specified query attribute, specified
in the WMOpenProcessInstancesList command. The query handle can no longer be used.

WMTErrRetType WMCloseProcessInstancesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenProcessInstancesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 53 of 53
Copyright © 1993, 1996, The Workflow Management Coalition

6.4.4 WMGetProcessInstance

NAME

WMGetProcessInstance - Return a specific process instance record.

DESCRIPTION

The WMGetProcessInstance provides information about what work has been done within a
process instance and what is the current work being done within the process instance.

WMTErrRetType WMGetProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
out WMTPProcInst pproc_inst)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to the process instance identification.
pproc_inst Pointer to a structure containing the requested process instance information.

Includes the state and other attributes of the process instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 54 of 54
Copyright © 1993, 1996, The Workflow Management Coalition

6.5 WAPI Activity Status Functions

The process status functions are intended to provide a view of the work done, work to be done, work
associated with a workflow participant or group of workflow participants, etc. The status queries may be
requested by a normal workflow participant or may be requested by a manager or process administrator
who wishes to view the progress of work within his/her domain.

The status API calls are structured such that they provide views ranging from a view of global work to a
view of work within a single activity instance. These views are as follows:

1 All the activity instances associated to a
process definition or instance

WM(Open+Fetch+Close)ActivityInstancesList

2 A view of a single activity within a process
instance.

WMGetActivityInstance

In addition, various filters (parameters) are provided with the calls such that the information returned may
be tailored.

The API functions associated with these API calls are described in this section.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 55 of 55
Copyright © 1993, 1996, The Workflow Management Coalition

6.5.1 WMOpenActivityInstancesList

NAME

WMOpenActivityInstancesList - Specifies and opens the query to produce a list of activity
instances that match the criterion of the filter.

DESCRIPTION

This command will return a query handle for a list of activity instances that match the criterion of the
filter. The command will also return, optionally, the total count of activity instances available. If the
count is requested and the implementation does not support it, the command will return a pcount value of
-1.

This command will be used to set up a wide variety of queries of activity instances. For example, this
command will be used to set up the query for a list of completed or suspended activity instances. If
pactivity_inst_filter is NULL, then the function, with the corresponding fetch calls will return the list
of ALL accessible activity instances.

WMTErrRetType WMOpenActivityInstancesList (
in WMTPSessionHandle psession_handle,
in WMTPFilter pactivity_inst_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pactivity_inst_filter Pointer to a structure containing the information for this request.
count_flag Boolean flag that indicates if the total count of activity instances should be

returned.
pquery_handle Pointer to a structure containing a unique query information returned by this

function.
pcount Total number of activity instances that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER

REQUIREMENTS

None

RATIONALE FOR API

The requester of the information needs to know what work of a particular type is in process or needs to
know what work has completed.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 56 of 56
Copyright © 1993, 1996, The Workflow Management Coalition

6.5.2 WMFetchActivityInstance

NAME

WMFetchActivityInstance - Returns the next activity instance from the list of activity instances
that met the selection criterion in the corresponding WMOpenActivityInstancesList call.

DESCRIPTION

This command returns an activity instance. This fetch function will return subsequent activity instances
after every call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA.

WMTErrRetType WMFetchActivityInstance (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPActivityInst pactivity_inst)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenActivityInstancesList query command.
pactivity_inst Pointer to a buffer area provided by the client application where the set of

activity instances will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 57 of 57
Copyright © 1993, 1996, The Workflow Management Coalition

6.5.3 WMCloseActivityInstancesList

NAME

WMCloseActivityInstancesList - Closes the query of activity instances.

DESCRIPTION

This command will close the query of activity instances that match the specified query attribute, specified
in the WMOpenActivityInstancesList command. The query handle can no longer be used.

WMTErrRetType WMCloseActivityInstancesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenActivityInstancesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 58 of 58
Copyright © 1993, 1996, The Workflow Management Coalition

6.5.4 WMGetActivityInstance

NAME

WMGetActivityInstance - Returns the record of a specific activity instance.

DESCRIPTION

The WMGetActivityInstance command provides status about an activity within a process
instance.

WMTErrRetType WMGetActivityInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
out WMTPActivityInst pactivity_inst)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the process instance identification.
pactivity_inst_id Pointer to a structure containing the identification of the activity instance.
pactivity_inst Pointer to a structure containing the activity instance information.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 59 of 59
Copyright © 1993, 1996, The Workflow Management Coalition

6.6 WAPI Worklist Functions

The WAPI worklist API calls provide workflow participants access to information about work to which
they have been assigned. As described by the WFM Coalition reference model, a process consists of a set
of activities connected in such a way to control the sequencing of application invocation. An activity is
associated with one or more applications to be invoked and also, during run time, is associated with the
person(s) who has been assigned to do the work. Depending upon a WFM product’s implementation, a
workflow participant may be assigned one or more pieces of work at any one time. Each piece of work
assigned to a workflow participant is called a ‘work item’ and the collection of all work items assigned to
a workflow participant is called that workflow participant’s ‘worklist’.

(Note: To clarify the difference between an ‘activity’ and a ‘work item’ the following discussion is
included. When a process is being defined (build time), an ‘activity’ is the construct used to define a piece
of work to be done. It serves as a type of anchor point for further descriptions of that work to be done (i.e.,
the name of the application to be invoked, possibly a reference to skills needed to do the work, a symbolic
name denoting the network address where the application is to be executed, etc.). During run time, when
the activity is ready to be executed and one or more candidate persons are assigned to do the work, a work
item is created and placed on that person(s) worklist. So, even though an activity and a work item both
represent a piece of work, they come into existence at different points in time, there may be more than one
work item for an activity and some operational characteristics may be different.)

A worklist then is defined as: the result of an implementation-defined query against the work item space.
It is a list of work items and a work item is one element in a worklist.

The API calls in this section exist for the manipulation of work items and worklists.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 60 of 60
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.1 WMOpenWorkList

NAME

WMOpenWorkList - Specifies and opens the query to produce the worklist that matches the
criterion of the filter.

DESCRIPTION

This command provides the capability of returning a list of work items assigned to a specified workflow
participant or a workgroup. The requester may be making the request on behalf of himself or may be a
manager wanting to know what work has been assigned to a particular person or a workgroup.

A query handle will be returned for the list of work items that match the specified value for the attribute.
The command will also return, optionally, the total count of work items available. If the count is
requested and the implementation does not support it, the command will return a pcount value of -1. If
pworklist_filter is NULL, then the function, with the corresponding fetch calls will return the list of
ALL accessible work items.

WMTErrRetType WMOpenWorkList (
in WMTPSessionHandle psession_handle,
in WMTPFilter pworklist_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pworklist_filter Pointer to a structure containing the filter information for this request.
count_flag Boolean flag that indicates if the total count of work items should be returned.
pquery_handle Pointer to a structure containing a unique query information returned by this

function.
pcount Total number of work items that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER

REQUIREMENTS

None

RATIONALE FOR API

A workflow participant must be able to determine what work has been assigned. A manager must be able
to determine who has work and what work is to be done within a department.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 61 of 61
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.2 WMFetchWorkItem

NAME

WMFetchWorkItem - Returns the next work item from the worklist that met the selection criterion in
the corresponding WMOpenWorkList call.

DESCRIPTION

This command returns a work item. This fetch function will return subsequent work items after every
call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA.

WMTErrRetType WMFetchWorkItem (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPWorkItem pwork_item)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the WMOpenWorkList

query command.
pwork_item Pointer to a buffer area provided by the client application where the set of work

item will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 62 of 62
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.3 WMCloseWorkList

NAME

WMCloseWorkList - Closes the query of work items.

DESCRIPTION

This command will close the query of work items that match the specified query filter, specified in the
WMOpenWorkList command. The query handle can no longer be used.

WMTErrRetType WMCloseWorkList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenWorkList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 63 of 63
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.4 WMGetWorkItem

NAME

WMGetWorkItem - Returns the record of a specific work item

DESCRIPTION

This command allows a workflow participant to designate which piece of work he wishes to do. The
viewer may be selecting a work item from a list obtained by the WMOpenWorkList command.

This command operates on a single work item basis. This command execution need not imply that the
work item is reserved or locked.

WMTErrRetType WMGetWorkItem (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id,
out WMTPWorkItem pwork_item)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the work item identification for this request.
pwork_item Pointer to a structure containing the work item being returned by this function.

ERROR RETURN VALUE

The error return value for this function will include one or more of the following error codes (see Error
Return Codes section):

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM

REQUIREMENTS

The application issuing the command must have sufficient identification information to select the
work item desired.

RATIONALE FOR API

A workflow participant must be able to tell the WFM Engine which piece of work is to be
selected.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 64 of 64
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.5 WMCompleteWorkItem

NAME

WMCompleteWorkItem - Tell the WFM Engine that this work item has been completed.

DESCRIPTION

This command allows a workflow participant to tell the WFM Engine that a work item has been
completed.

To change a work item's attributes, multiple calls to WMAssignWorkItemAttribute.

WMTErrRetType WMCompleteWorkItem (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the work item identification for this request.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM

REQUIREMENTS

None

RATIONALE FOR API

WFM products implement various ways to determine when an activity is complete. The use of the API
may range from just a successful/unsuccessful indication to placing values in the completion state which
might cause the WFM Engine to select a future model navigation path from among many.

Typically, a work item will correspond to an activity instance. However the API should allow the
existence of multiple work items per activity, executed one at a time. So completion of a work item does
not necessarily mean that all work for an activity instance is completed. Completion of a work item could
trigger the start of the next work item that corresponds to that activity instance. The Workflow Engine
will determine the next work item based on the process definition.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 65 of 65
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.6 WMReassignWorkItem

NAME

WMReassignWorkItem

DESCRIPTION

This command allows a work item from one workflow participant’s worklist to be reassigned to another
workflow participant’s worklist.

(Note: Possible future releases of the API specification may provide for an entire worklist to be reassigned
in total.)

WMTErrRetType WMReassignWorkItem (
in WMTPSessionHandle psession_handle,
in WMTPWflParticipant psource_user,
in WMTPWflParticipant ptarget_user,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
psource_user The identification of a workflow participant from which work is to be reassigned.
ptarget_user The identification of the workflow participant to whom work is to be assigned.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the work item identification being reassigned.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM
WM_INVALID_SOURCE_USER
WM_INVALID_TARGET_USER

REQUIREMENTS

The workflow participant making the reassignment request has the authority to do so.

RATIONALE FOR API

A workflow participant having work assigned may be away from work for various reasons and the work
must be given to another workflow participant to get it accomplished. A WFM Engine may direct all
work items to a single worklist (departmental worklist for example).

With the reassignment API, workflow participants in that department may reassign work to themselves
after they finish a current work item and become available for more work. This creates a possible de facto
people load balancing scheme.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 66 of 66
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.7 WMOpenWorkItemAttributesList

NAME

WMOpenWorkItemAttributesList - Specifies and opens the query to produce the list of work item
attributes that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of attributes for a work item. The command will also
return, optionally, the total count of attributes available. If the count is requested and the implementation
does not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available attributes that can be assigned to the work
item, in order to offer this list to the application user. Attribute values can be obtained as well provided
that a buffer of enough size is passed in the fetch call. Individual attribute values can also be retrieved
with the WMGetWorkItemAttributeValue call. If pwork_item_attr_filter is NULL, then the
function, with the corresponding fetch calls will return the list of ALL attributes available for the work
item.

WMTErrRetType WMOpenWorkItemAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id,
in WMTPFilter pwork_item_attr_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the unique work item ID.
pwork_item_attr_filter Filter associated with the work item attributes.
count_flag Boolean flag that indicates if the total count of work item attributes should

be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of attributes for this work item.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 67 of 67
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.8 WMFetchWorkItemAttribute

NAME

WMFetchWorkItemAttribute - Returns the next work item attribute from the list of work item attributes
that match the filter criterion.

DESCRIPTION

This command returns a work item attribute. This fetch function will return subsequent work item
attributes after every call. The fetch process is complete when the function returns the error
WM_NO_MORE_DATA. The fetch function will return the attribute value as well in a buffer specified in the
call. If buffer_size is NULL then the attribute value will not be returned. If buffer_size is not large
enough to hold the attribute value then the function will return as much of the attribute value as can be fit
in the buffer. The proper length of the attribute value is available in the attribute_length field. The
application can compare the attribute_length with the buffer_size to determine if the full value was
returned.

WMTErrRetType WMFetchWorkItemAttribute (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenWorkItemAttributesList query command.

pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed.
buffer_size Size of the buffer.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 68 of 68
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.9 WMCloseWorkItemAttributesList

NAME

WMCloseWorkItemAttributesList - Closes the query for work item attributes.

DESCRIPTION

WMTErrRetType WMCloseWorkItemAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenWorkItemAttributesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 69 of 69
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.10 WMGetWorkItemAttributeValue

NAME

WMGetWorkItemAttributeValue - Returns the value, type and length of a work item attribute specified
by the pwork_item_id parameter.

DESCRIPTION

This command will return the value of a work item attribute in the buffer specified in the call.

WMTErrRetType WMGetWorkItemAttributeValue (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id,
in WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the unique work item ID.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.
buffer_size Size of the buffer to be filled.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ATTRIBUTE
WM_INSUFFICIENT_BUFFER_SIZE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 70 of 70
Copyright © 1993, 1996, The Workflow Management Coalition

6.6.11 WMAssignWorkItemAttribute

NAME

WMAssignWorkItemAttribute - Assign the proper attribute to a work item.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, to change an attribute or to change the value
of an attribute of a work item.

WMTErrRetType WMAssignWorkItemAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the work item ID for which an attribute will be

added or changed.
pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 71 of 71
Copyright © 1993, 1996, The Workflow Management Coalition

6.7 WAPI Administration Functions

The set of administration functions provide the functionality needed to perform administration
and maintenance functions of a workflow system. This set includes the minimal services
contemplated for this client application interface. The set includes functions to change state of
a set of process or activity instances, terminating and aborting process instances, and for
assigning attributes to a set of process and activity instances.

6.7.1 WMChangeProcessInstancesState

NAME

WMChangeProcessInstancesState - Change the state of the instances of the named process definition
that match the specified filter criterion.

DESCRIPTION

This command is defined to allow a set of process instances in the named process definition to move to a
specific new state.

Execution of this command will cause a set of process instances of the named process definition change
their state. If the filter pointer pproc_inst_filter is NULL, then the command is applied to all process
instances. Specific state names and their semantics are dependent upon the particular WFM Engine
implementation.

This call will be executed when a set of process instances of a process must have a new state, such as
suspended, disabled or enabled. Specific state names and semantics must be included in implementation
documentation.

Since this command operates on a set of process instances of a named process definition, it is expected to
be issued by a person having the authority to do so. The scope of this operation may be different
depending on the vendor's implementation.

WMTErrRetType WMChangeProcessInstancesState (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPFilter pproc_inst_filter,
in WMTPProcInstState pproc_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing a unique process definition ID.
pproc_inst_filter Pointer to a structure containing the filter information for this request.
pproc_inst_state An ID that indicates the process state that you want to change to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_FILTER
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique ID within an administrative scope.
Each process definition must have a unique ID within an administrative scope.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 72 of 72
Copyright © 1993, 1996, The Workflow Management Coalition

RATIONALE FOR API

This API allows the possible intervention of a process administrator in a running process. This might be
for the purpose of changing the process definition and having all subsequently created instances reflect the
new definition. It provides the capability of halting running process instances while changes in roles,
activities, etc. are put into effect. It allows instances to be stopped while problem determination can be
done on a malfunctioning process.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 73 of 73
Copyright © 1993, 1996, The Workflow Management Coalition

6.7.2 WMChangeActivityInstancesState

NAME

WMChangeActivityInstancesState - Change the state of the activity instances of a particular name
associated to a process definition that match the specified filter criterion.

DESCRIPTION

This command directs a WFM Engine to change the state of the named activity for a set of activity
instances. It is assumed that a person who can change the state of the set of activity instances
corresponding to a process definition has special authorization to do so. If the implementation supports a
state such as suspended, and resumed or in-progress, then the functions for suspend and resume are
implemented as state change calls. If the filter pointer pact_inst_filter is NULL, then the command is
applied to all activity instances of the given activity definition.

WMTErrRetType WMChangeActivityInstancesState (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPActivityID pactivity_def_id,
in WMTPFilter pact_inst_filter,
in WMTPActivityInstState pactivity_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing a unique process definition ID.
pactivity_def_id Pointer to the activity definition ID.
pact_inst_filter Pointer to a structure containing the filter information for this request.
pactivity_inst_state An ID that indicates the activity instance state that you want to change to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_ACTIVITY_NAME
WM_INVALID_FILTER
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each process definition must have a unique ID within an administrative scope.
Each activity must have a unique ID within a process definition.

RATIONALE FOR API

A workflow participant may wish to modify the states of activity instances of a particular activity. Other
situations might involve the malfunctioning of an application associated with an activity. A process
containing the activity may be a frequently used one, and it might be issuing dumps each time it is
invoked. The use of this API would allow the calling of the application to be stopped while remedial
measures were taken.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 74 of 74
Copyright © 1993, 1996, The Workflow Management Coalition

6.7.3 WMTerminateProcessInstances

NAME

WMTerminateProcessInstances - Terminate the process instances of the named process definition that
match the specified filter criterion.

DESCRIPTION

This command provides the capability of terminating a set of process instances associated with a process
definition. Execution of this command will cause a set of process instances of the named process
definition to be terminated. If the filter pointer pproc_inst_filter is NULL, then the command is
applied to all process instances.

WMTErrRetType WMTerminateProcessInstances (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPFilter pproc_inst_filter)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing the process definition for which all process

instances are to be terminated.
pproc_inst_filter Pointer to a structure containing the filter information for this request.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_FILTER

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 75 of 75
Copyright © 1993, 1996, The Workflow Management Coalition

6.7.4 WMAssignProcessInstancesAttribute

NAME

WMAssignProcessInstancesAttribute - Assign the proper attribute to a set of process instances within
a process definition that match the specific filter criterion.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, or to change an attribute or to change the
values of an attribute of a set of process instances within a named process definition.

This command changes the value of the attribute of a process instance. These attributes of process
instances are of the kind called Process Control or Process Relevant Data.

WMTErrRetType WMAssignProcessInstancesAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPFilter pproc_inst_filter,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing the process definition ID for which the

attribute of all process instances will be changed.
pproc_inst_filter Pointer to a structure containing the filter information for this request.
ppattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_FILTER
WM_INVALID_ATTRIBUTE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 76 of 76
Copyright © 1993, 1996, The Workflow Management Coalition

6.7.5 WMAssignActivityInstancesAttribute

NAME

WMAssignActivityInstancesAttribute - Assign the proper attribute to set of activity instances within a
process definition that match the specific filter criterion.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, or to change an attribute or to change the
value of an attribute of a set of activity instances within a named process definition. These attributes of
activity instances are of the kind called Process Control or Process Relevant Data. If pact_inst_filter
is NULL, then the function is applied to ALL accessible activity instances of the given activity definition.

WMTErrRetType WMAssignActivityInstancesAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPActivityID pactivity_def_id,
in WMTPFilter pact_inst_filter,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing the process definition ID. In the case that the

attribute will be changed for all activity instances that correspond to the
process definition. This parameter will be NULL otherwise.

pactivity_def_id Pointer to a structure containing the activity definition identification for which
the attribute will be assigned.

pact_inst_filter Pointer to a structure containing the filter information for this request.
pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_ACTIVITY_NAME
WM_INVALID_FILTER
WM_INVALID_ATTRIBUTE

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 77 of 77
Copyright © 1993, 1996, The Workflow Management Coalition

6.7.6 WMAbortProcessInstances

NAME

WMAbortProcessInstances - Abort the set of process instances that correspond to the named process
definition, that match the specific filter criterion, regardless of its state.

DESCRIPTION

This command allows a set of process instances of a process definition to be aborted. All current
activities within these process instances will be stopped when possible. The instances will be terminated.
If pproc_inst_filter is NULL, then the function will be applied to ALL accessible process instances.

WMTErrRetType WMAbortProcessInstances (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPFilter pproc_inst_filter)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing the process definition for who all processes

instances is being aborted.
pproc_inst_filter Pointer to a structure containing the filter information for this request.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_FILTER

REQUIREMENTS

None

RATIONALE FOR API

This command is for use in catastrophic circumstances where nothing except clearing the process
away can be done.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 78 of 78
Copyright © 1993, 1996, The Workflow Management Coalition

6.7.7 WMAbortProcessInstance

NAME

WMAbortProcessInstance - Abort the process instance specified regardless of its state.

DESCRIPTION

This command allows a process instance to be aborted. All current activities within the process
instance will be stopped when possible. The instance will be terminated.

WMTErrRetType WMAbortProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the process instance being aborted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE

REQUIREMENTS

None

RATIONALE FOR API

This command is for use in catastrophic circumstances where nothing except clearing the process away
can be done.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 79 of 79
Copyright © 1993, 1996, The Workflow Management Coalition

7. Appendix A

7.1 Additional API Areas

The WFM Coalition API specification work will address the following areas. It will be determined
whether API calls should be created for these areas or whether they are the sole domain of particular
WFM product implementations.

7.1.1 WFM Data API calls

The types of data that applications need to manipulate through this API specification are process control
data, process relevant data, and application data. The current specification addresses the access to these
data through the definition and manipulation of attributes of processes, activities and work items. It is
currently believed that some additional new API calls or parameter additions to existing API calls will be
required for complete data manipulation.

7.1.2 Ad hoc activities

In a future release of API specifications, the API working group will consider the functionality to allow
applications to add activities to an instance of a process that are not part of its definition. These ad-hoc
additions will be done on an instance basis.

7.1.3 Administration and Maintenance

The API working group believes that the functions in this area correspond to interface 5. Services should
include functions for:

• Purging
• Backup
• Archiving
• Download and Upload instances (for remote users)

7.1.4 Names and Roles

The API working group believes that a Workflow Engine should also provide services for definition,
assignment, mapping and maintenance of roles and names (identities). The working group also believes
that these services should be provided through interface 5 as well.

7.2 Additional Issues

The WFM Coalition API specification work will be expanded to take care of the following issues for
future releases.

7.2.1 Error reporting and control

All WAPI function calls have a uniform error return datatype. This data type is shared among all API
calls. This specification assumes that the Coalition will specify a subset of the main error return codes,
leaving for vendor specific implementation the remaining main error return codes and the set of subcode
codes to provide extensibility and specialization of error codes. (See section WAPI Data Types, and WAPI
Error Return Codes sections).

7.2.2 Synchpoint processing

Synchpoint processing deals with recoverability. The API working group believes that this area is
extremely important to WFM exploiters. However, it is also believed that it would be one of the more
difficult areas to deal with in terms of member agreement. Work in this area is being deferred to the
second release of the API specifications.

Workflow Management Application Programming Interface (Interface 2) 15-May-96

Version 1.1 Page 80 of 80
Copyright © 1993, 1996, The Workflow Management Coalition

7.2.3 Security

The current version of the WFM API specification does not include any specific requirements or
provisions for security mechanisms, except for the inclusion of user password in the WMTConnectInfo
structure. Implementation of security mechanisms are left up to the specific implementations.

7.2.4 Locking

The current version of the WFM API specification does not include any specific requirements or
provisions for locking mechanisms. Implementation of locking mechanisms are left up to the specific
implementations.

7.2.5 Process Integrity

The current version of the WFM API specification does not include any specific requirements or
provisions for mechanisms to guarantee process integrity. Implementation of process integrity
mechanisms are left up to the specific implementations.

