WorkyTow Marapeniént Coalition

C

The Workflow Management Coalition Specification

Workflow Management Application
Programming Interface (Interface 2& 3)
Specification

Document Number WFMC-TC-1009

July-98
Version 2.0

Copyright (C) 1993, 1999, The Workflow Management Coalition

All rightsreserved. No part of this publication may be reproduced, stored in aretrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior written permission of the Workflow Management Coalition except that reproduction,
storage or transmission without permission is permitted if all copies of the publication (or portions thereof)
produced thereby contain a notice that the Workflow Management Coalition and its members are the
owners of the copyright therein.

This Specification has been authored by Workflow Management Coalition members.

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Workflow Management Coalition
Email: WEMC@wfmc.org
or Workgroup2@wfmec.org
or Workgroup3@wfmc.org

WWW: http://www.wfmc.org

The "WfMC" logo and "Workflow Management Coalition" name are service marks of the
Workflow Management Coalition.

Neither the Workflow Management Coalition nor any of its members make any warranty
of any kind whatsoever, express or implied, with respect to the Specification, including as
to non-infringement, merchantability or fitness for a particular purpose. This
Specification is provided “asis’.

First printing, November 1995
Second printing, version 1.1, May 1996
Third printing, version 2.0, July 1998

Version 2.0 Page 2 of 2
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

0. CHANGE HISTORY oottt sttt et e e e stestesaeese e e eseesaesaesaesaesseeneeneesennsessnssens 7
Lo PURPOSE....cee et bbbt bttt e e b e e bt eh e e b e e ae e st e e e b e e b e eheebe e bt ene e e e tenee b e e e 8
22 N | = N SRS 8
3. OVERVIEW ...t bbb et bbbt b e et e n e e ee e e besbesheeb e et enteseenbenbenreas 8
31 Application INterface DEfINITIONooiiieieie e 9
311 PUrpose & BacKgrOUNG...........coeiuiririeieriesie sttt st se et bbb e e e e sae e sae 9
3.2 DESIGN PhilOSOPIY ...ttt ettt se bbb bt eae et ae e b e b e 10
33 DESION ASSUMPLIONS ...ttt ettt sttt b ettt e st b she b e et e s e e ss et e s besbesbe s et eae e e e nseseeseesbene 10
34 DESION ODJECLIVES.....ceeeeeierie ettt et b sh e e bt e et e s besbeebe et eae e e e nbeseesbesbe e 10
35 Defined Terms and ADDreViations ..o 10
3.6 REFEIENCE DOCUMENLS ...ttt sttt ettt bbbt se et e s b e sbesbe s et eae e e e neeseesbenbe e 10
37 CONFOMMBINCE. ... ettt ettt b e bt h et e e se e s b e s besheehe e e e neese e et e sbesbeebe e e eneeseenbeseesben 10
3.8 WAPI NaminNg CONVENTIONSeciuiiiiiiesiesie et eeesee e steesteesteesae e e saeesseesteestesnsesseesseesreessesnsesnnes 10
YN o I N I I s SRS 12
41 BaSIC WAPI DAIA TYPES.....eiuiieuiriirieiente sttt sttt sttt b et b e st b et b bbb ebentenes 12
4.2 Other WAPI DEIA TYPES. ...eeeeverieeeteste ettt st sttt sttt st be et b e bt b e sttt st st et st naene 12
43 N 111 1 == P 16
5. WAPI ERROR RETURN CODES.........cootiiiiene ettt s sb s e e e ne s e 17
6. WAPI DESCRIPTIONS.......oc ettt steeteee e seesteseste e sseesaesees e stessessesseeseeseensessessessessessesnsensessensensenns 19
6.1 WAPI CONNECLION FUNCLIONSccuveieieriesie et sees ettt eae et sre s e e enaeneenaesnesrennes 19
6.1.1 BT Y[@0] ot 22
6.2 WAPI Process CONrol FUNCHIONSooiiiieiieieieeesese st sae st sse s e enaeseensesseseesnes 23
6.2.1 WMOPENProceSSDEf NItIONSLISEc.coiirieiiirieirseree s 23
6.2.2 WIMFEtChPrOCESSDEfINITION......ecvieeciesesie e sre e 25
6.2.3 WM ClOSEPT 0CESSDEf NItIONSLISE.....eeevereeriesie st se e e srennes 26
6.2.4 WMOPenProcessDEfiNItIONSIALESLISEcviirieiririecrereeese e 27
6.2.5 WMFetChProcessDEfiNItIONSIALE........cccviiieieeieeee et e nns 28
6.2.6 WM Cl0SeProcessDEfi Niti ONSIALESLISE.......ecvvieeeeeeeeiereere e sre s 29
6.2.7 WM ChangeProcessDEfiNItIONSALE.ccceririeiririereer s 30
6.2.8 WM CreatePrOCESSINSIANCE.covieeieeeieriee ettt st e ee e e e sreenneenes 31
6.2.9 R LTS =T 0t RS 32
6.2.10 WM TerminatePrOCESSINSIANCEccovererieie ettt see e nns 33
6.2.11 WMOPENPTOCESSINSLANCEALESLISE........eveeereirieeiriireereree s 34
6.2.12 WIMFEtChPr OCESSINSLANCESIALE.cuveeeiesie s eete et s sre e ne e e seesrenns 35
6.2.13 WM ClOSEPT 0CESSINSLANCEALESLISEveveeeseeceeeeeee e seesre e 36
6.2.14 WM ChangePrOCESSINSLANCETIALEcouireeieriirieiriereeere e 37
6.2.15 WMOPenProcess NStanCeAIiIDULESLISEcocerireriree s 38
6.2.16 WMFetChProcessI NStANCEALITDULEcivieeeeeceres e 39
6.2.17 WM Cl0oseProcess! NStanCeAL I TDULESLISEo..veveeeeerere e e 40
6.2.18 WM GetProcessi NStanCeAriDULEVAIUE............c.eeveierere e 41
6.2.19 WMASSI gNProcessI NStANCEALIIIDULE..........ccoiriiiirere s 42
6.3 WAPI Activity COntrol FUNCLIONS........c.ciirieiiiieirierieesie st 44
6.3.1 WMOPENACL VIt NSEANCEALESLISEcoveeeeeeririeicrterie e 44
6.3.2 WMFEChACHVITYINSLANCETIALEcveeieeeeiestesee e 45
6.3.3 WMCI0SEACtVityl NSLANCEALESLISEveveeerterieicrierie st 46
6.3.4 WM ChangeACtiVItyl NSEANCESIALE.coireeirireeerre e 47
6.3.5 WMOpenACctivityl NStanNCEAIITDULESLISEooveerireerereere s 48
Version 2.0 Page 3 of 3

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.3.6 WMFetChACLi Vityl NSLANCEALLITDULE..........eoiieieece e 49
6.3.7 WMCIoseActiVityl NStanCeA T IDULESLISE..........coci e 50
6.3.8 WMGetACtivityl NStanCeALI TDULEVAIUE............c.eeieeee e 51
6.3.9 WMASSI NACLIVityl NSLANCEALLITDULE ..o s 52
6.4 WAPI Process StAEUS FUNCLIONS.........couiiiiiieieeiieieeie et se b e e s 53
6.4.1 VWM OPENPY OCESSINSEANCESLISE...... ettt 54
6.4.2 VWM ELCPT OCESSINSLANCE.cecveeeeee ettt s b et e e e sne e 55
6.4.3 VWM ClOSEPT OCESSINSEANCESLISE ...ttt st e 56
6.4.4 WM GELPT OCESSI NSLANCE. ...ttt b e sb e e e s ae e sneenne s 57
6.5 WAPI ACtiVity SEAEUS FUNCHIONS.........ciiiiiicciectece sttt et sreere e 58
6.5.1 WM OPENACHTVItYINSEANCESLISE ... e e e 59
6.5.2 WIMFEtChACHIVITYINSLANCE......c.viciece ettt s ne e re s 60
6.5.3 WMCIOSEACLI VItYINSEANCESLISE......cceveciieciee et re s 61
6.5.4 WM GELACHVITYINSIANCE ..ottt e sttt e e ne e e s nnesne e neenes 62
6.6 WAPH WOIKISE FUNCLIONS......c..cieiiieieieriesie ettt sre s 63
6.6.1 VVIMIOPENWVOTKLISE. ...ttt ettt st sttt sb e b bt et e e e e see b nnas 64
6.6.2 WWIMIFEECWWOTKITEIM......co ettt bbbt e b e 65
6.6.3 VVIMICTOSEWWOIKLISE ...ttt sttt sttt ettt b e bbbt st e e e e e e e snennas 66
6.6.4 WWIMIGEEWOTKITEIM ...ttt bttt bbbt see b e 67
6.6.5 VWM COMPIELEVVOT KITEIM. ...ttt e st sre s 68
6.6.6 WM OPENWOTrKItEMSIALESLISE ...t e e 68
6.6.7 WWIMIFELChWOT KITEIMSEALE ... ettt sttt st e e e sre e 70
6.6.8 WM CIOSEWOr KItEMSIALESLISE ...ttt e 71
6.6.9 WM ChangeWOT KItEMSIALE..........ccueeierieiie ettt ettt e sttt e e ne s ee e e sneenneenes 72
6.6.10 WIMREASSIGNWOIKITEM.....covieieciece ettt sttt ettt et e s ta e s re e teenesnaesneesneeneenes 73
6.6.11 WM OPENWOr KIEMALFTDULESLISE ..o 74
6.6.12 WIMFEtChWOr KITEMALIFIDULE.........coeeeeeeese e e e e 75
6.6.13 WM ClOSEWOr KITEMALEFTDULESLISE. ...t 76
6.6.14 WM GEWOr KIteEmMAITIDULEVAIUE.........oeeieie e e 77
6.6.15 WMASSI GNWOT KIEEMAITTDULE ... s 78
6.7 WAPI AdMinNiStration FUNCLIONS...........coiiiieieiieeeie et s 79
6.7.1 WMChangeProCeSSINSLANCESIIALE.cc.eeieerieeiie e cee et erte e eee e e e s e e sreesre s ee e e sreenreenes 79
6.7.2 WMChangeACtiVityl NSLANCESTALEcc.eeieeieeie et 81
6.7.3 WM TerminatePrOCESSINSIANCES.ccuoiiriereiee et st sre s 82
6.7.4 WMASSIgNProcessiNStanCESALIIDULEc..eo e 83
6.7.5 Event Code: WMASSignedProcessl NStanCeALtr ibULES............coeevevcee e 83
6.7.5 WMASSI gNACLI Vityl NStANCESALIIIDULE. ..o 84
6.7.6 VWIMADOItPr OCESSINSLANCES........cveeeeeiie ettt sttt sttt bbbt se e seesneenas 85
6.7.7 VWIMADOItPT OCESSINSLANCE. ...ttt sttt e e b bt e e e b e 86
6.8 WAPI Application INVOCaLioN FUNCLIONS..........cceiiiieiiiere e 86
6.8.1 WMTACONNECt() & WMTADISCONNECL() ...euveeveeieeie e cee sttt etesteesree e sne s ae s sneenne s 87
6.8.2 VWM TAINVOKEADPPIICALION() +..veveeteeeeiesie ettt sttt st sb e bbb seesre e 88
6.8.3 WM TAREQUESEAPDSIATUS() ... veeveemeeneeseeste sttt sieeee et st sre b se e eesee b sbe s e e e e e eeeseesresnas 89
6.8.4 VWIMTATEN MINBLEADP() -+t veterueeteeeeie st st sttt st e e sa bbbt b et ese e e e besbesbesbe s st eneeneeneeseesrennas 0
7. APPENDIX A: FUTURE WORK ..ottt ettt st eenaeseensesae e 92
7.1 AAAItIONAI APL ATEBS.......ee ittt ettt st te e be et e s e e sbe e sbeesbe e besabesaaesbeesbeesbeeresnnas 92
7.1.1 WM Data API CalIS......ccueiitieiecie ettt st sttt st sbe e b e e nesneesaeesreenbeenns 92
7.1.2 A NOC ACHIVITIES......cviiii ettt et e et e et e sbeesbeesbeesbeebesneesaeesreebeenns 92
713 Administration and MaiNtENANCE...........cceiieiieieccee ettt e sae e s aeesreenbeenns 92
7.1.4 NAMES ANA ROIES........oiiuiecieeiee ettt ettt st esbe e s beebeseesaeesbeesbeebeenbeentesaeesreeas 92
7.2 AAITIONA] ISSUES.......ccuveitieitieitie ettt ettt ee st e st e e s be e be et e saeesaeesbeebeenbesabesaaesbeesbeesbeenrennnas 92
721 Error reporting and CONEIOLooueiiirieinee e 92
722 SYNCHPOINE PrOCESSINGvevereeteiteeete ettt st sttt ettt bbb e 92
7.2.3 SECUNTLY vttt sttt bbbt b e bt b e s bt b e bt b e et b e bbbt b e bt b e 93
Version 2.0 Page 4 of 4

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

724 [0 Tox (o SO 93
7.25 L 0Tor SR 1 01 =: | 1 ST 93
8. APPENDIX B: OBJECT BINDINGS.......cctiiiririeirit ettt 94
8.1 Abstract ObJeCt DEfINITION.cc.ciiirieirereer bbb sre e 94
811 Mapping WAPI to the OLE and IDL BindingScccocverininnnieeseneesesiee s 95
8.2 OLE AUtOMELioN BiNAINGcc.eivirieeerierieenieeeie ettt sttt sttt st st nnene 96
821 Expressing WAPI2 as an OLE Automation Interface..........ccoeeeneneineneinenecseeeseee 96
8.2.2 ALTTDULES. ...ttt bbbt b bbbt b et b bbbt a e e enes 99
8.2.3 S < < SO SO P TSOR TSR TT 100
8.24 1= SRR 104
8.25 Process DEfiNITION. ..o 104
8.2.6 PrOCESS INSLANCEeeveeieetieee et sr e nr e ne s 108
8.2.7 ACHVITY DEFINITION ...ttt ettt b e besne e 109
8.2.8 ACHVITY INSEANCE. ...ttt b e et b bbbt be st 110
8.2.9 WVOTKITEIML ..ttt et b et b bbb e b e b se et e s b e se et e st st benbe e 111
8.2.10 Transition DEfINITION.........ccciii e e e e 112
8.2.11 Participant DEfiNITION ... 112
8.2.12 APPLICALION DEFINITION ...t s 113
8.2.13 Process Data DEfiNiTiON...........cuiiieiiiienerese e 113
8.2.14 ALTDULE ...ttt b et b e bbb st b e b et st ne b b e 113
8.3 OMG IDL BIiNAING. .0ttt sttt sttt bbb bbbt sbesnne 114
831 The Workflow Facility Base MOUUIE............ccooiiininereeeeese e 114
8.3.2 Workflow Application Client Server INterface..... ..o 116
8.33 The Process DEfinition MOAUIE ..o e 120
834 Relationship to WIMC Sandards...........ccoeiireeninieeniniesesieese s 125
9. APPENDIX D: AUDIT DATA ettt s n e es e sne e sne e s sne e 126
9.1 Auditing Process DEfINITIONScciiiiiii ettt e e e be b eneesnaesraens 126
9.2 AUditiNg ProCESS INSIANCESveeiieie ettt e rae e s re e s e e s be e be et e eneesneesreens 126
9.3 AUditing ACLIVILY INSIANCES......coiieiiiie et e sre e s re e re e be e b e eneesneesreens 127
94 AUAItING WOTKITEMS......ccueicie ettt st te e e sre e s ae e s be e beenreeneesneesreens 127
10. APPENDIX E: CONFORMANCE PROFILES.......ccooot ittt 128
101 Philosophy and APPrOBCRccecuiiiie ettt 128
10.2 Practice @n0 POLICYc.oiviieieiiesieiesiereere ettt sttt bbb 128
10.3 The WAPI Conformance Profiles and FUNCLIONS..........ccooiirenninernesese e 129
10.3.1 WMIsWorkListHandler Profil €SUPPOItEd........coeeererieirereerenee e 129
10.3.2 WMI sProcessControl SatusProfil € SUPPOIted........ooveevereirereiseeeese e 131
10.3.3 WMI sProcessDefinitionProfileSUPPOrted..........ccovveiiireenencsecese e 133
10.34 WMI sProcessAdMINProfileSUPPOrTEdcooveiiirieinereeseeese e 134
10.3.5 WMI sActivityContr ol SatusProfil €SUPPOITEdovveveririeirereeseeere e 136
10.3.6 WMISACtivityAdmiNProfil€SUPPOItEd..........coereeiiirenenereese e 137
10.3.7 WMIsEntityHandler Profil €SUPPOITEd........c.eviieiiireiriereeese e 138
10.3.8 WMI sAUditRecOor dPr ofi @SUPPOITEAcccueiiirieirereeere e 138
10.39 WMTOOI AGEntPrOfil@SUPPOITEd.........c.eviieciiriee e 139
11. APPENDIX F: WORKFLOW DEFINITION FUNCTIONS.........cccoeireneneenesreesre e 142
11.1 Entity Handling fUNCLIONSociiiie ettt st sneesnee s 142
11.1.1 ENLitY DA TYPES .eecueeeeierte sttt ettt sttt ettt st b et ae et e b b sb e b e bt ese e e e besaesre e 142
11.1.2 VWIMCTEBIEENTILYveveeveetee ettt sr e sr e nn e nne e 143
11.1.3 VWIMOPENENTTESLISEcveeeeeree ettt r e e nn e 143
11.1.4 VWIMFRICNENTITY ...ttt r e nesn e s nne e 145
1115 VWIMCIOSEENTITIESLISE. ... veeeveereeeee sttt nne e 146
11.1.6 VVIMDEIEEEENTITY......e.ecveeveecee sttt b e r e e b e r e n e sr e e s nne e 147
Version 2.0 Page 5 of 5

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2 Entity Attribute ManipUIation..........cc.ooiiiiiieieeee e e 148
1121 WM OPENENL ty AL IDULESLISE ...t 149
11.2.2 WWIMFELCNENLItYALIITDULE ..ot bbb 150
11.2.3 WM CIOSEENLItY AL TDULESLISE. ...t 151
11.24 WM GELENLI YA TDULEVAI U ...ttt 152
11.25 WMOpenENtityAttr iDULEVAIUELISEc..oiviieeieiieieeee e 153
11.2.6 WMFetChENtity ALtr TDULEVAIUE........c.oe ettt 154
11.2.7 WM CIOSeENtity ALt iDULEVAIUELISEoeiieeeeeieeeieeee e 155
11.2.8 WMASSINENtity ALFTDULEVAIUE ...t 156
11.29 WM Clear ENtity AL TDULELISEc.eeeeieiestese e 157
11.2.10 WMAAENL ty AL TDULEVAIUE ...ttt 158

11.3 Process Modelling FUNCLIONS...........oiieiieiecie ettt ee s te et s ee e ste e beeneesnaenneens 159
11.31 WM OPENWOr KFIOWD Efi NITION. ...ttt 160
11.3.2 VWM ClOSEWOT KFIOWDEfINITION ...ttt 161
11.33 WM CreateProcesSDEfiNItIONccoiiiiiiiiieeeee e 162
11.34 WMDel eteProceSSDEfiNITION.........cociiiriiiie e 163
11.35 VWM OPENPTOCESSDEfTNITION ...ttt sae 164
11.3.6 VWM CIOSEPT OCESSDEfTNITTION ...ttt 165

114 Standard Process Modelling ENtity TYPES......cooi it 165
1141 AdditioNal DAta TYPESccveiueruieuieieeie ettt ettt sttt be bt eese e st et sbesbe s e eseeseenbesaesaen 165

12, APPENDIX G: STATES ..ttt seese st ste et e e e e ste e ste e sse e e essessesaessesseeseeseessessensessessens 168

12.1 PrOCESS INSLANCE SEALESecveeieeeie ettt ee st te e ee st e saeesreesseeneeeneessennneens 168

12.2 ACHVILY INSEANCE SEALES.......ccuiiieieieiieet ettt sttt 169

12.3 WVOTKITEM SEALES.......vicieiiectie ettt ettt sttt ettt et e be s aaesbeesbeesbeesbeeasesaeesaeesbeeebeenbesnbesssesseessenns 170

Version 2.0 Page 6 of 6

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3)

0. Change History

Version 1.0
Intitial version
Version 1.1
Consistent handling of output parameters as pointers
Added attributes for WM TProcessDefinition
Editorial enhancements
Version 1.2
Added Abstract Object Model
Added OLE Binding
Added OMG IDL Binding
Version 2.0 (Beta)
Added Process Definition functions
Added States
Added references to Audit Data
Added Conformance Specification
Version 2.0 (Beta)
Added Application Interface Definition
Added Application Interface functions
Version 2.0e (Beta)
Added Conformance Profile for WFTool Agent

Version 2.0
Copyright © 1993, 1999, The Workflow Management Coalition

01-July-98

Page 7 of 7

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

1. Purpose

The purpose of this document is to specify standard workflow management Application Programming

Interfaces (API) which can be supported by WFM products. These API calls provide for a consistent

method of accessto WFM functions in cross-product WFM Engines. The API set is named Workflow
Application Programming Interfaces (WAPI).

This document defines the API specifications of the Workflow Management Coalition for building
workflow-enabled applications (Interface 1,2 and 3 in the Workflow Reference Model).

This document is directly associated to the documents:

Workflow Management Coalition Glossary
Workflow Management Coalition Interface 2 WAPI Naming Conventions

The three documents constitute the complete specification.

2. Audience

The intended audience of this document includes all participants in the workflow industry. Comments
should be addressed to the Workflow Management Coalition.

3. Overview

The support of these interfacesin WFM products allow the implementation of front-end applications which
need to access WFM Engine functions (Workflow services). Such implementations might be written by
WFM exploitersor ISVs. Implementation of these API calls are also intended to allow the workflow
applications to be adjusted to operate with different WFM Engines using this common API interface.

These API calls should allow a WFM exploiter to have a single end user interface and functions set
regardless of the number of WFM products existing in an installation. WAPI calls may be implemented in a
number of languages. The first Coalition specification will be for the‘C’ language. The APl operates as
CALLS. No assumption is may regarding the underlying implementation of the CALLS in a particular
WFM product implementation. The WAPI calls are for use a run-time. That is, when processes are
executing or are to be executed. They would normally be used by workflow applications (e.g. worklist
handlers, cooperating applications) but may also be used by a WFM Engine when it wishesto interact with
another WFM product within the context of the API functions.

Through its set of functions, the WAPI provides a set of workflow services that a Workflow Enactment
Service provides. The WAPI does not assume any specific user interface, but rather it specifically assumes
that the user interface of the workflow enabled application, that uses these services, provides its own user
interface, that depends solely on the application development environment facilities whereit is
implemented.

Version 2.0 Page 8 of 8
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

The WFM Engine functions can broadly be classified in the following areas:

WAPI Connection Functions

WAPI Workflow Definition Functions
WAPI Process Control Functions
WAPI Activity Control Functions
WAPI Process Status Functions
WAPI Activity Status Functions
WAPI Worklist Functions

WAPI Administration Functions

3.1 Application Interface Definition

Introducing a Workflow Management System always implies that at least the existing IT environment hasto
be integrated, or better “workflow enabled”. Additionally, this interface grants a certain degree of protection
on the aready installed software systems.

The WIMC' sinterface to invoke applications does not define a direct application control mechanism.
Today, the customers and the vendors are confronted with several different operating systems and
application communication mechanisms. Therefore, Workflow Management Systems need an interface to
specific application drivers. With the definition of these drivers to invoke and control applications, the
Coalition offers an interface which enables a standardized protocol between workflow products and any
other software systems.

Currently, avariety of Workflow Management Tools support specialized mechanisms to integrate
applications and to exchange information. While all these mechanisms are mostly individually implemented
for specific customer requirements, system integration companies and third party vendors have to re-
implement these mechanisms, if they intend to use another Workflow Management tool at the same site.
Consequently, their interest in supporting the generation of such an interfaceis, indeed, very high, asit
would definitely improve their daily work. It might appear very simple to “workflow enable” common
applications, nevertheless, workflow environments typically include a series of different specialized
applications, which run in heterogeneous environments.

Workflow Management Systems aswell as integration platforms are required by the market and require a
generalized and standardized application interface.

3.1.1 Purpose & Background

The “Invoking Applications Interface” defines an interface mechanism between Workflow Management
Systems and any other application, but it, however, differentiates itself from the other Coalition interface
definitions. Invoking an application is not a workflow specific functionality, but a Workflow System would
not make much sense without this functionality.

Therefore, this interface addresses workflow system vendors as well as any third party software vendor.
Based on different communication technologies the so-called “ Tool Agents’ can handle the application
control and information exchange. These Tool Agents represent at least one specific invocation technology.
E.g. while one Tool Agent supports DDE commands, others can communicate based on protocols like OLE
or CORBA or any other concept.

The technology to interact between a Tool Agent and a corresponding application depends on the
underlying architecture and on application - specific interfaces, which have to be managed under control of
the Tool Agent itself. The suggested interface defines the way a Tool Agent can be used by a workflow
application, e.g. aworklist handler or the workflow engine. Finaly, the purpose of Tool Agents can be
compared with the purpose of standardized software components.

Version 2.0 Page 9 of 9
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

3.2 Design Philosophy

There are a number of design assumptions and constraints that provide a framework or philosophy for the
definition of this specification.

3.3 Design Assumptions

Incremental Set of Functions. It isassumed that as the WFM technology evolves, likewise the
specifications defined in this document will evolve and will have additions in subsequent versions
of this document.

Strings are defined with buffer sizes allocated in bytes. Strings are assumed to be zero terminated.
The workflow engine may have security restrictions that may cause an error to be returned to a user for
some of the API calls.

The specific calls to change state have to be supported by all vendors. The generic state changes are
reserved for vendor specific states. In the future, it is expected that a common set of states will evolve.
Each process definition must have a unique ID within an administrative scope.

Each process instance must have a unique 1D within an administrative scope.

Each activity instance must have a unique ID within a process instance.

Each work item must have a unique ID within a process instance.

Process Instance ID is unique to the workflow engines from which it isavailable. Itisthe
responsibility of the workflow engine to ensure a unique identifier within this scope.

3.4 Design Objectives

Ease of Implementation. The API specification must be easy to implement by a wide range of
vendors. Thisalso implies that the specification will be able to be implemented by
multiple vendors in a reasonably short period of time.

3.5 Defined Terms and Abbreviations
The terms used in this document are defined in the WFM Coalition Glossary.

3.6 Reference Documents

The following documents are associated with this document and should be used as a reference.
WFM Caoalition Reference Model
WFM Coalition Glossary
WFM Caoalition WAPI Naming Conventions

3.7 Conformance

A vendor can not claim conformance to this or any other WfMC specification unless specifically authorized
to make that claim by the WfMC. The WfMC grants this permission only upon the verification of the
particular vendor’ s implementation of the published specification, according to the conformance
requirements and applicable test procedures defined by the WfMC.

3.8 WAPI Naming Conventions

The Working group has proposed a set of standards for handling the naming conventions of the different
implementation of the Workflow API. These naming conventions standards are described in the document

Version 2.0 Page 10 of 10
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Wor kflow Management Coalition Interface 2 WAPI Naming Conventions (Document Number WFMC-TC-
1013).

Version 2.0 Page 11 of 11
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

4. WAPI Data Types

This section describes the WAPI datatypes. These datatypes are used in the WAPI calls as input and
output parameters.

4.1 Basic WAPI Data Types

This subsection contains definitions of the basic Workflow Management types that are operating system or
platform dependent.

typedef char WMTI nt 8;
typedef short WM nt 16;
typedef |ong WMTI nt 32;
typedef unsigned char WMTUI nt 8;
typedef unsigned short WMTUI nt 16;
typedef unsigned | ong WMTUI nt 32;
typedef WMTI nt 8 WM Text ;
typedef WMIText *WMIPText ;
typedef WMTI nt 8 *WMTIPI nt 8;
typedef WMTI nt 16 *WMIPI nt 16
typedef WMTI nt 32 *WMIPI nt 32
typedef WMTI nt 8 WMTBool ean;
typedef WMIUI nt 8 *WMI'Poi nt er;
typedef WMIText *WMIPPri vat e;
#defi ne WWNULL ((WMTPoi nt er) 0)
#def i ne WvFal se 0

#defi ne WMITue (! WFal se)

4.2 Other WAPI Data Types

This subsection contains definitions of the Workflow Management types that are specific to the structures
and objects defined in this specification.

Stringsin this specification, are assumed to be zero terminated. The maximum string length for names,
keywords and identifiers in this specification is 63 characters hosted in a 64 byte text array. The following
macro definition specifies this typical size:

#defi ne NAME_STRI NG _SI ZE 64

All stringsin this specification are defined as text arrays, such as:

WMT Text user _identificati on[NAVE_STRI NG_SI ZE] ;

Given this, in the example above the string can include up to amaximum of 63 real characters.

In some other cases, the fixed size structures for data reference and unique ids are also defined through the
following macro definitions:

#define UNIQUE_I D SI ZE 64

Version 2.0 Page 12 of 12
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

All WAPI function calls have a uniform error return datatype:

typedef struct

WMTI nt 16 mai n_code;
WMTI nt 16 sub_code;
} WMIErr Ret Type;

Thisdatatypeis shared among all APl calls. All other data types are shown along with the WAPI
description for each individual call.

This error return datatype is a Int32 word that has two Int16 elements for error returns. The main_code
element contains the main error return code, while the sub_code element contains a code that further
specifies the nature of the error. For example, the main_code error code Wyl | NVALI D_PROCESS_| NSTANCE
(see Error Return Codes below), would include in its sub_code set of codes a further, more detailed reason
why the process instance isinvalid.

This specification assumes that the Coalition will specify a subset of the main_code codes, leaving for
vendor specific implementation the remaining main_code codes and the set of sub_code codes to provide
extensibility and specialization of error codes.

typedef struct

WMTText user_identificati on[NAVE_STRI NG_SI ZE] ;
/1 The identification of the workflow

partici pant on whose behal f the Workfl ow
Application will be operating. The
val ue specified may represent a human, a
device, etc. This identificationis
nornal |y used for security checking,
accounting, etc.

WM Text passwor d[NAME_STRI NG_SI ZE] ;
WUTText engi ne_name[NAVE_STRI NG_SI ZE] ;

/1 The identification of the WM Engi ne to
whom t he subsequent APl calls are to be
directed. This information would not be
required for some WFM products in the
normal case. However, it is required for
those Workfl ow Applications which
interact with multi ple WFM Engi nes. Thi s
woul d be a synbolic nanme which is
resol ved through a | ookup facility.

WUTText scope[NAME_STRI NG_SI ZE] ;
/1 ldentification of scope for the

application. |If scope is not relevant,
then this field would be enpty and
i gnor ed.
} WMIConnect | nf o;
typedef WMIConnect | nfo *WJTIPConnect | nf o;
typedef struct
WMTUI nt 32 sessi on_i d; /1 locally unique ID for the session
WMTPPri vat e ppri vat e; /'l pointer to a private structure containing

vendor specific information.
} WMTSessi onHandl e;

typedef WMISessi onHandl e *WMTIPSessi onHandl e;

Version 2.0 Page 13 of 13
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

typedef struct

WMTI nt 32 filter_type; /1 Includes basic types and SQ String
WMTI nt 32 filter_length; /1 Length (in bytes) of value
WMT Text attribute_name [NAME_STRI NG_SI ZE]
WMTUI nt 32 conpari son; /1 one of: <, > = I= <=, <=
WMTPText filter_string;
YWMTFi | ter;

typedef WMIFilter *WMIPFilter;

/1 The first 255 filter types will be reserved. These will be used for filtering on
attributes of process control data and process rel evant data. The specific code val ues
for these codes are included in the WM Coalition Interface 2 WAPI Nani ng Conventions
speci fication docunent.

/1 In this specification there are two types of filters. One type is useful for
conpari sons wWith and between attribute values. In this case, the filter_string
includes the attribute value that the attribute is conpared against. The second type
is a nore general nechanismin which the filter_string represents the whol e argunent
(typically a full SQ argunent). If filter_type is a SQ string, the filter_string
will point to a SQL clause with the syntax of a WHERE cl ause in the SQL 92 standard
| anguage specification.

typedef struct

WMTUI nt 32 query_handl e;
} WMTQuer yHandl e;

typedef WMIQuer yHandl e *WMTPQuer yHandl e;

typedef struct

WMT Text wf_partici pant [NAME_STRI NG_SI ZE] ;
}WMIW | Parti ci pant;

typedef WMIW | Partici pant *WMITPW | Parti ci pant;

typedef struct

WMUTText proc_def i d[UNI QUE_I D_SI ZE] ;
} WMTPr ocDef | D;

typedef WMIProcDef| D *\WMTPPr ocDef | D

typedef struct

WM Text activity_i d[NAVE_STRI NG _SI ZF] ;
}WMTActi vityl D;

typedef WMTActivityl D *WMIPActi vityl D;

typedef struct

WMUTText proc_def st at e[NAME_STRI NG_SI ZE] ;
} WMIPr ocDef St at e;

typedef WMIProcDef St at e *\WMTIPPr ocDef St at €; // pointer to a 63-byte string

typedef struct

/1 This is the mninumlist of elements at this tine. Future versions to provide
extensibility for this structure.

WM Text process_nane[NAVE_STRI NG_SI ZE] ;
WMTPr ocDef | D proc_def _i d;
WMTPr ocDef St at e state;

} WMIPr ocDef ;

typedef WMIProcDef *WMJTPProcDef ;

Version 2.0 Page 14 of 14
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

typedef struct

WM Text proc_inst _i d[UNI QUE_I D_SI ZE] ;
}WMTPr ocl nst | D,

typedef WMIProcl nstl D *WMIPPr ocl nst | D;

typedef struct

WM Text proc_i nst _stat e[NAME_STRI NG_SI ZE] ;
} WMTProcl nst St at e;

typedef WMIProcl nstState *WMIPProclnstState; // pointer to a 63-byte string

typedef struct

/1 This is the minimnumlist of elenments at this tine. Future versions to provide
extensibility for this structure.

WMT Text process_nane[NAME_STRI NG_SI ZE] ;
WMTPr ocl nst 1 D proc_i nst _i d;

WMTPr ocDef | D proc_def _i d;

WMTIPr ocl nst St at e stat e;

WMTI nt 32 priority;

WMIW | Par ti ci pant proc_partici pant s[20];

//up to 20 63 character long participant identifiers
} WMIProcl nst;

typedef WMIProcl nst *WMIPProcl nst;

typedef struct

WMIText activity_ inst_id[UNIQUE | D SI ZE] ;
}WMTAct i vityl nst|D;

typedef WMTActivitylnstlD *WMIPActi vitylnstlD;

typedef struct

WMTText activity_inst_state[NAVME_STRI NG_SI ZE] ;
} WMTActivityl nst State;

typedef WMTActivitylnstState *WMTIPActi vityl nst St ate;

typedef struct

/1 This is the mninumlist of elenents at this time. Future versions to provide
extensibility for this structure.

WM Text activity_name[NAVME_STRI NG_SI ZE] ;
WMTActi vityl nst1D activity_inst_id;

WMTPr ocl nst 1 D proc_i nst _i d;
WMIActivitylnstState state;

WMTI nt 32 priority;

WUMTW | Parti ci pant activity_participants[10];

//up to 10 63 character long participant identifiers
} WMTActivitylnst;

typedef WMIActivitylnst *WMIPActivitylnst;

Version 2.0 Page 15 of 15
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

typedef struct

WMT Text work_i tem.i d[UNI QUE_I D_SI ZE] ;
}WUTWr ki t eml D

typedef WMIWorkltem D *WMTPWor ki t eml D
typedef struct

/1 This is the minimumlist of elenments at this tine. Future versions to provide
extensibility for this structure.

WMT Text wor ki t em_name[NAME_STRI NG _SI ZE] ;
WMTWor ki t eml D wor ki tem.i d;

WMTAct i vityl nstlD activity_inst_id;

WMTPr ocl nst 1 D proc_i nst _i d;

WMTI nt 32 priority;

WMIW | Par ti ci pant partici pant;

} WMIWr ki t em
typedef WMIWorkltem * WATPWor ki t em

typedef struct

WMT Text attri bute_name[NAVE_STRI NG_SI ZE] ;

WMTI nt 32 attribute_type; /1 type of the attribute

WMTI nt 32 attribute_l ength; /1 length of the attribute val ue
WMIPText pattri bute_val ue; /1 pointer to the attribute val ue

} WMTAttri bute;
typedef WMTAttribute *WMIPAttri bute;
typedef struct
WMTI nt 32 attri bute_nunber;
WMIPAttri bute pattribute;
WMTNext At tr *WMTAt t ri but eLi st
} WMTAttri butelist;

typedef WMTAttributeList *WMIPAttri butelLi st;

4.3 Attributes

This specification does not make any assumption about the binding that workflow applications will make of
retrieved attributes and their values. It is up to the specific application to manage thisbinding. The API
manages attributes as a set of four elements:

WMT Text attri bute_nanme[NAVE_STRI NG _SI ZE] ;

WMTI nt 32 attribute_type; /1 type of the attribute

WMTI nt 32 attribute_| ength; /1 length of the attribute val ue
WMIPText pattri bute_val ue; /1 pointer to the attribute val ue

All APl callsin this specification that deal with attributes, take each individual element as separate
parameter for the call.

The following type definitions are used for attribute name:

typedef WMTIText WMTAttr Nane[NAME_STRI NG_SI ZE] ;
typedef WMTAttr Name *WMIPAttr Nane;

These attributes are of the kind called Process Control and Process Relevant Data. Some attributes of
process instances, activity instances and work items could be: priority, state, start_time, description,
instance_name, workflow_participant.

Version 2.0 Page 16 of 16
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

5. WAPI Error Return Codes

This section describes the minimal set of WAPI error return codes. These error codes correspond to the
main_code element of the WMTErrRetType datatype defined above. The specific code values for these
codes areincluded in the WFM Coalition WAPI Naming Conventions specification document.

The minimal set of main_code error return codes are:

WM SUCCESS
Indicates that the API call completed successfully.

VWM _CONNECT_FAI LED
Indicates that the WM Connect call failed.

VK| NVALI D_PROCESS_DEFI NI TI ON
Indicates that the process definition ID that was passed as parameter to an API call was
not valid, or it was not recognized by the servicing workflow engine.

VK| NVALI D_ACTI VI TY_NAME
Indicates that the activity name that was passed as parameter to an API call was not valid,
or was not recognized by the servicing workflow engine.

W | NVALI D_PROCESS_| NSTANCE
Indicates that the process instance ID that was passed as parameter to an API call was not
valid, or was not recognized by the servicing workflow engine.

WWK1_I NVALI D_ACTI VI TY_I NSTANCE
Indicates that the process instance |D that was passed as parameter to an API call was not
valid, or was not recognized by the servicing workflow engine.

W _| NVALI D_WORKI TEM
Indicates that the work item ID that was passed as parameter to an API call was not valid,
or was not recognized by the servicing workflow engine.

WM | NVALI D_ATTRI BUTE
Indicates that the attribute that was passed as parameter to an API call was not valid, or
was not recognized by the servicing workflow engine.

WV ATTRI BUTE_ASSI GNVENT_FAI LED
Indicates that the workflow engine was not able to complete the attribute assignment
requested.

WV | NVALI D_STATE
Indicates that a state was not valid, or was not recognized by the servicing workflow
engine.

WM TRANSI TI ON_NOT_ALLOWED
Indicates that the state transition requested was not valid, or was not recognized by the
servicing workflow engine.

W | NVALI D_SESSI ON_HANDLE
Indicates that the session ID that was passed as parameter to an API call was not valid, or
was not recoghized by the servicing workflow engine.

Wi _| NVALI D_QUERY_HANDLE
Indicates that the query handle ID that was passed as parameter to an APl call was not
valid, or was not recognized by the servicing workflow engine.

W | N\VALI D_SOURCE_USER

Version 2.0 Page 17 of 17
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Indicates that the participant “ source user” that was passed as parameter to an API call
was not valid, or was not recognized by the servicing workflow engine.

Wi | NVALI D_TARGET_USER
Indicates that the participant “target user” that was passed as parameter to an API call was
not valid, or was not recognized by the servicing workflow engine.

WV | NVALI D_FI LTER
Indicates that the filter structure or values that were passed as parameter to an API call
was not valid, or was not recognized by the servicing workflow engine.

WW_LOCKED
Reserved for situations in which the servicing workflow engine implements “locking” of
workflow entities (process definitions, process instances, activities, work items, etc.) to
indicate that the entity islocked at the moment in which its access is requested.

WM _NOT_LOCKED
Reserved for situations in which the servicing workflow engine implements “locking” of
workflow entities (process definitions, process instances, activities, work items, etc.) to
indicate that the entity is not locked at the moment in which its access is requested.

WV NO_MORE_DATA
Indicates that afetch query call has reached the end of thelist of valid entitiesto be
returned. This error return code is used to implement queries of lists of workflow entities,
it indicates that all the entities of the list that matched the selection criterion have already
been returned.

W | NSUFFI Cl ENT_BUFFER_SI ZE
Indicates that the buffer size that was passed to an API call isinsufficient to hold the data
that it is supposed to receive.

VWM _APPLI CATI ON_BUSY
I ndi cates that the corresponding application is currently busy and cannot
return a status of work progress.

VWM | NVALI D_APPLI CATI ON
I ndicates that an invalid application has been requested by the calling
interface.

VM | NVALI D VORK_| TEM
I ndicates that an invalid work item has been referenced to by the calling
interface.

VWM _APPLI CATI ON_NOT_STARTED
I ndi cates that the requested application did not start up successfully.

VW _APPL| CATI ON_NOT_DEFI NED
Indicates that the application is not installed or configured.

WM_APPLI CATI ON_NOT STOPPED
I ndi cates that the corresponding application did not stop orderly.

Version 2.0 Page 18 of 18
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6. WAPI Descriptions
This section describes the WAPI calls. They are grouped as follows:

WAPI Connection Functions

WAPI Process Control Functions
WAPI Activity Control Functions
WAPI Process Status Functions

WAPI Activity Status Functions

WAPI Worklist Functions

WAPI Administration Functions

WAPI Application I nvocation Functions

The specification of the WARPI calls that follows includes a specification of parameters with
indications of the direction of data passing:

in for parameters with data being passed to the API from the calling application
out for parameters with data being passed from the API to the calling application.

It should be noted, that in the “C” language interface, parameters that are specified as out require a
pointer to be passed from the calling application to the API. The API in turn will return the
appropriate data in the space pointed to by the pointer. The specification of these in and out
parametersis provided to clarify the specific purpose of these parametersin the calls.

6.1 WAPI Connection Functions

Connected/Connectedless Overview

The Coalition WM Connect /WM Disconnect APl commands are intended to bound a set of related work
by the application using them. When issued, the WM Connect returns a handle whose value is used on all
other Coalition API calls. The handle value is unique and relates API calls which are issued between a
WM Connect /WM Disconnect pair instance. The WM Connect command allows information to be
supplied once and to remain valid until a WM Disconnect occurs.

Information supplied during the WM Connect (see the ConnectInfo structure in the WM Connect call)
includes identification information relating to who/what is requesting services from the WFM Engine for
use by an authentication service. The structure of the session handle that is returned by the WM Connect
call isa pointer to a structure that contains a session ID and another structure pointer containing vendor
specific information. (See the Session Handle structure in the WM Connect call.)

For those workflow servers that establish a connection, the session ID and the pointer to the vendor specific
information would be returned by the workflow engine. For those workflow serversthat do not establish a
connection, the session ID would be set to 0, and a pointer to the connection information that was passed in
by the user will be stored in the private structure contained in the session handle structure.

Operation between the API and the Engine

The construction of the Coalition API calls are intended to have little impact on the operational structure of
how a WFM product supportsthem. The API calls are considered to be protocol neutral in that once the
API boundary is crossed, different types of mechanisms may be employed to deliver the request to the
WFM engine. A particular WFM product's method of interacting between the API calls and the WFM
Engine functions may be RPC, conversational, messaging (connectedless) or others.

Version 2.0 Page 19 of 19
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

If a messaging mechanism is used by a WFM product, the receipt of a WM Connect may result in the
determination of what messaging queueis to be used for interaction between its API support and the WFM
engine functions, plus establishing control information to link that queue to subsequent API calls which use
aparticular handle. If the WFM engineis remote, it may also send a setup type of message to the engine.

If a conversational mechanism is used by a WFM product, and the WFM engine is remote, the receipt of a
WM Connect may result in the establishment of a communications session between the code supporting the
API cals and the WFM engine.

If adatabaseis being used, one of the results of the WM Connect may be the establishment of a connection
to the appropriate data store facility.

A particular WFM product may choose to accept the WM Connect command, return a handle, and ignore
the fact that it occurred.

The above are examples of possible operations performed by different WFM products in support of a
WM Connect command. Obviously, more are possible.

In some cases, a product will be required to connect a single workstation to multiple WFM engines. Itis
possible that multiple WM Connect commands are active concurrently and the subsequent API commands
be directed to the correct WFM engine. The WM Connect command may be used to designate a particular
engine. The handle returned from the WM Connect command may be used on subsequent API callsto link
those which relate to a engine.

The results of a WM Disconnect command is may vary, again depending upon a particular WFM product
implementation. Its purpose isto indicate that the application issuing the preceding API calls will no longer
be accessing the WFM engine functions within the previous context. In some products, upon receipt of a
WM Disconnect command, communications and other resource types may be rel eased.

Application Operation when using the API calls

The operational structure of an application asit relates to the use of the Coalition API calsis affected by
the way the API calls are constructed. The current construction of the Coalition API calls result in the code
segment of the application making the API call to runin blocked mode. That is, the application will issue
an APl command and ‘wait' for a response from what it perceives as the WFM engine. When making the
API cdl, the application code segment gives up control to the APl and does not regain control until the AP
command is satisfied.

Much of the time, the APl commands will be issued due to aworkflow participant's direction via
the application's End User Interface (EUI). Most of the current APl commands are not such that a
workflow participant would be interested in making the request, doing something else, and then
sometime later (via a process/queue/whatever) viewing the real response to the request. With the
request types supported by the API set, it would normally be the case that a workflow participant
would want to see the response to the request as soon as possible.

The API calls could be constructed in such away to allow the application code segment making the API
call to runin unblocked mode. That is, to make the API cal 'immediate return’ rather than waiting for the
actual response to the requested action. If thiswere done, the Coalition would need to define additional
functions to support connectedless mode of operation (in some manner, get the asynchronous response
when it did arrive and get it to the workflow participant).

The WM Connect / WM Disconnect APl commands themselves have nothing to do with the ability of an
application to run connected or connectedless as they are now defined.

Version 2.0 Page 20 of 20
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Synchronous vs Asynchronous Calls

Most API calsinthe WAPI call set are synchronous calls. In particular all the query related API calls are
synchronous. Other calls may have some asynchronous behavior in that the call itself will return
synchronously to the caller program, but the work specified by the call may be executed by the Workflow
Engine at alater time, letting the application proceed. This set of API calswill not include any Call-Back
mechanism to synchronize asynchronous calls.

Version 2.0 Page 21 of 21
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.1.1 WM Connect

NAME
WM Connect - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WM Connect command informs the WFM Engine that other commands will be originating
from this source.

WWTEr r Ret Type VWConnect (
in WJTPConnect | nfo pconnect _info,
out WMTPSessi onHandl e psessi on_handl e)

Argument Description
PCO””_eCt _info Pointer to structure containing the information required to create a connection.
psessi on_handl e Pointer to a structure containing information which can be passed to the WFM

Engine on al subsequent API calls which would identify interactions within the
WM Connect / WM Disconnect bounds, that define a participant’s session
interaction with the Engine. These handles are opague so that in connectedless
environments the handles include participants identities and passwords rather
than session identification. There will be a special value for a handle to indicate
failure of the function.

ERROR RETURN VALUE

W _SUCCESS
VWM CONNECT_FAI LED

WM DisconnectNAM E
WM Disconnect - Disconnect from the WFM Engine for this series of interactions
DESCRIPTION

The WM Disconnect command tells the WFM Engine that no more API calls will be issued from this
source using the named handle. The WFM Engine could discard state data being held or take other closure
actions.

WMTEr r Ret Type VWDI sconnect (
in WMIPSessi onHandl e psessi on_handl e)

ERROR RETURN VALUE

W _SUCCESS
VW | NVALI D_SESSI ON_HANDLE

Version 2.0 Page 22 of 22
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2 WAPI Process Control Functions

Process Control Functions can be defined as those which change the operational state of one or more
processinstances. These API calsare intended for use by the WFM end user application. However, some
of the API cdls, or parameters within some of the API calls, may affect multiple users and would normally
be restricted to the use of a process administrator.

6.2.1 WM OpenProcessDefinitionsList

NAME

WM OpenProcessDefinitionsList - Specifies and opens the query to produce alist of all process
definitions that meet the selection criterion of thefilter.

DESCRIPTION

This command may also be used by a manager or process administrator to get alist of process definitions so
they may view which processes are startable by particular persons. This command directs the WFM Engine
to open the query to provide alist of process definitions which are available to a particular workflow
participant, some of which may be startable by the participant. It isassumed that not all processesin an
organization may be started by all workflow participants. One of the uses of this APl isto allow aworkflow
participant to view which processes he/she can start with the expectation that the next action by the
workflow participant would be to pick one to be started.

This command will return a query handle for alist of process definitions that match the specified value for
the attribute. The command will also return, optionally, the total count of definitions available. If the count
is requested and the implementation does not support it, the command will return apcount value of -1. If
pproc_def _filter iSNULL, then the function, with the corresponding fetch calls will return the list of

ALL process definitions.

(Note: This API does not change the state of process or activity instances per the definition above of
Process Control Functions. It isincluded in this section because it might normally lead to the execution of
other API calls which would cause operational state changes.)

WMEr r Ret Type VWIOpenPr ocessDefi ni ti onsLi st (

i WMIPSessi onHandl e psessi on_handl e,
WMTPFi | ter pproc_def _filter,
WMTIBool ean count _fl ag,
out WMTPQuer yHandl e pquery_handl e,
out WMTPI nt 32 pcount)

=

2l515

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pproc_def _filter Filter associated with the process definition.
count _flag Boolean flag that indicates if the total count of definitions should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of process definitions that fulfill the filter condition.
ERROR RETURN VALUE
WM_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | N\VALI D_FI LTER

Version 2.0 Page 23 of 23
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

REQUIREMENTS
No requirements are assumed to exist with regard to the type of process model.

No requirements are assumed to exist with regard to how workflow participant’s are identified within the
WFM Engine.

RATIONALE FOR API

This command and the corresponding fetch calls allows a workflow participant to retrieve the
process definition ids which aworkflow participant is authorized to start. They might be used in
conjunction with the WM CreateProcess| nstance and WM StartProcess API callsto start a
particular named process.

Version 2.0 Page 24 of 24
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.2 WM FetchProcessDefinition

NAME

WM FetchProcessDefinition - Returns the next process definition from the set of process definitions that
met the selection criterion stated in the WM OpenProcessDefinitionsList call.

DESCRIPTION

This command directs the WFM Engine to provide one process definition from the list of process
definitions which are available to a particular workflow participant, some of which may be startable by the
participant. It is assumed that not all processes in an organization may be started by all workflow
participants. One of the uses of this API isto allow aworkflow participant to view which processes he/she
can start with the expectation that the next action by the workflow participant would be to pick one to be
started. Thisfetch function, aswell as all other fetch functionsin this API, will return subsequent items
after every call, one at atime. The fetch process is complete when the function returns the error

WM NO_MORE_DATA. The sort order in which the items are returned is specific of the workflow engine
servicing the call, no specific order should be assumed.

WMTEr r Ret Type VWWFet chProcessDefinition (
in WJTIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMTPPr ocDef pproc_def _buf_ptr)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the

WM OpenProcessDefinitionsList query command.
pproc_def _buf _ptr Pojnter to abuffer area provided by the client application where the process
definition structure will be placed.

ERROR RETURN VALUE

WW_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | NVALI D_PROCESS_DEFI NI TI ON
WV | N\VALI D_QUERY_HANDLE
WW_NO_NMORE_DATA

Version 2.0 Page 25 of 25
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.3 WM CloseProcessDefinitionsList

NAME
WM CloseProcessDefinitionsList - Closes the query of process definitions.

DESCRIPTION

WMTEr r Ret Type VWMCI osePr ocessDefi nitionsLi st (
in WJTPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e I dentification of the specific query handle returned by the

WM OpenProcessDefinitionsList query command.

ERROR RETURN VALUE

WW_SUCCESS
WV | NVALI D_SESSI ON_HANDLE
W | NVALI D_QUERY_HANDLE

Version 2.0 Page 26 of 26
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.4 WM OpenProcessDefinitionStatesL ist

NAME

WM OpenProcessDefinitionStatesList - Specifies and opens the query to produce the list of states of the
process definition that match the filter criterion.

DESCRIPTION

This command will return aquery handle for alist of states for a process definition. The command will also
return, optionally, the total count of definitions available. If the count is requested and the implementation
does not support it, the command will return apcount value of -1.

One of the uses of this AP, together with the corresponding fetch and close calls isto allow aworkflow
application to query the Workflow Engine for the available states of the process definition that match the
filter criterion, in order to offer thislist to the application user. For example, process definitions can bein
states such as disabled (thus disallowing temporarily the creation of new process definitions), or enabled
(thus alowing again the creation of new process definitions based on the named definition). If

pproc_def _state_filter iSNULL, then the function, with the corresponding fetch calls will return the list
of ALL states available for the definition.

WMTEr r Ret Type VWIOpenPr ocessDef i niti onSt at esLi st (
i WMTIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pproc_def _id,
WMTPFi | ter pproc_def _state_filter,
WMTBool ean count _fl ag,
out WMTPQuer yHandl e pquery_handl e,
ut WMTUI nt 32 pcount)

5151515

—

Argument Name Description
psessi On_hénd' e Pointer to a structure containing information about the context for this action.
pproc_def _id . Pointer to a structure containing the unique process definition 1D.
pproc_def _state_filter Filter associated with the process definition state.
count _flag Boolean flag that indicates if the total count of process definition states
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of statesfor this process definition.
ERROR RETURN VALUE
WM_SUCCESS

WV | NVALI D_SESS| ON_HANDLE
W | NVALI D_PROCESS_DEFI NI TI ON

Version 2.0 Page 27 of 27
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.5 WM FetchProcessDefinitionState

NAME

WM FetchProcessDefinitionState - Returns the next process definition state, from the list of states of the
process definition that match the filter criterion.

DESCRIPTION

This command returns a process definition state. This fetch function will return subsequent process
definition states after every call. The fetch process is complete when the function returns the error
W NO_MORE_DATA.

WMTEr r Ret Type VWWFet chProcessDefinitionState (
in WJTIPSessi onHandl e psessi on_handl e,

in WMIPQueryHandl e pquery_handl e,
out WMTPProcDef St at e pproc_def_state)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.

pquery_handl e Identification of the specific query handle returned by the
WM OpenProcessDefinitionStatesL ist query command.

pproc_def _state Pointer to a buffer area provided by the client application where the state name
will be placed.

ERROR RETURN VALUE

W SUCCESS

WV | NVALI D_SESSI ON_HANDLE
WV | N\VALI D_QUERY_HANDLE
WVM_NO_MORE_DATA

Version 2.0 Page 28 of 28
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.6 WM CloseProcessDefinitionStatesL ist

NAME
WM CloseProcessDefinitionStatesList - Closes the query for process definition states.

DESCRIPTION

WMTEr r Ret Type VWMCI osePr ocessDefinitionStatesLi st (
in WMIPSessi onHandl e psession_handl e,
in WJUrPQueryHandl e pquery_handl e)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e I dentification of the specific query handle returned by the

WM OpenProcessDefinitionStatesL ist query command.

ERROR RETURN VALUE

WW_SUCCESS
WW_| NVALI D_SESSI ON_HANDLE
WV | N\VALI D_QUERY_HANDLE

Version 2.0 Page 29 of 29
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.7 WM ChangePr ocessDefinitionState

NAME
WM ChangePr ocessDefinitionState - Changes the state of the named process definition.

DESCRIPTION

This command is defined to allow a process definition to be changed temporarily to a specific state such as
disabled (thus disallowing temporarily the creation of new process definitions), or enabled (thus allowing
again the creation of new process definitions based on the named definition).

WMTEr r Ret Type VWIChangePr ocessDef i nitionState (
i WMTPSessi onHandl e psessi on_handl e,

=}

in WMIPProcDef | D pproc_def _id,
in WMIPProcDef State pproc_def_state)
Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this
. action.
pproc_def _id Pointer to a structure containing a unique process definition ID.
pproc_def_state Pointer to a structure that contains the name of the state to change the

process definition to.

ERROR RETURN VALUE

WW_SUCCESS
WV | NVALI D_SESS| ON_HANDLE
W | NVALI D_PROCESS_DEFI NI TI ON
WV | NVALI D_STATE

VW _TRANSI TI ON_NOT_ALLOWED

REQUIREMENTS
Each process definition must have a unique ID within an administrative scope.
RATIONALE FOR API

This APl allows the possible intervention of a process administrator in arunning process. This might be
for the purpose of changing the process definition and having all subsequently created definitions reflect the
new definition.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Definition State
Event Code: WM ChangedProcessDefinitionState
Version 2.0 Page 30 of 30

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.8 WM CreateProcessl nstance

NAME

WM CreateProcessl nstance - Create an instance of a previously defined process.

DESCRIPTION

An operational instance of the named process definition will be created by a WFM Engine as the result of
this command. A call to WM StartProcess would then start the process.

To assign attributes to the process instance, you will make multiple callsto
WM AssignProcess! nstanceAttribute.

The process instance | D returned by this call isvalid and reliable until WM StartProcess is called, at which
time it may be reassigned to anew vaue.

WWTEr r Ret Type VWMCr eat ePr ocessl nst ance (
i WMIPSessi onHandl e psessi on_handl e,

>

in WMIPProcDef| D pproc_def_id,

in WMTIPText pproc_inst_nane,

out WMTPProclnst!1D pproc_inst_id)
Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing a unique process definition ID.
pproc_l nst —hame Pointer to the name for the process instance created by this call.
pproc_inst_id Pointer to a structure containing the process instance ID created by this call.
ERROR RETURN VALUE

WW_SUCCESS
WV | NVALI D_SESSI ON_HANDLE
W | NVALI D_PROCESS_DEFI NI TI ON

REQUIREMENTS
No requirements exist with regard to process model type.
RATIONALE FOR API

This API allows aworkflow participant to create an instance of aprocess. It is anticipated that vendor’s
implementations will be of at least 2 types: one in which the creation of a process instance and the starting
of the same are a single functionality and another in which this functionality is separate. The callsin this
API definition are thus separated to accommodate both types of implementation. Vendors that provide the
single functionality will implement the creation and start of a process through the creation of atemporary
(possibly local) proc_i nst _i d through WM CreateProcess| nstance, assign attributes to it and then call

WM StartProcess.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Create/ Start Process Instance
Event Code: WM CreatedProcess| nstance
Version 2.0 Page 31 of 31

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.9 WM StartProcess

NAME
WM StartProcess - Start the named process.
DESCRIPTION

The WM StartProcess command directs the WFM Engine to begin executing a process, for which an
instance has been created. When a processiis started through this command, the first activity(s) of the
process will be started. The processinstance ID returned by this call will be valid for the life of the process
instance.

Note: The programmer needs to maintain the association between the new process instance ID and the
session in order to identify which session they need to connect to for future calls.

WWMTEr r Ret Type VWSt art Process (
in WJTPSessi onHandl e psessi on_handl e,

in WMIPProclnst!ID pproc_inst_id,
out WMTIPProcl nstl D pnew_proc_inst_id)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the process instance ID returned by the

WM CreateProcesslnstance call.

pnew_proc_i nst_i d Pointer to a structure containing the process instance |D created by this call.
ThisID will be valid for the life of the process instance.

ERROR RETURN VALUE

WW_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | NVALI D_PROCESS_| NSTANCE
WV | N\VALI D_ATTRI BUTE

REQUIREMENTS

The process instance to be started has a unique id within an administrative scope.
No requirements exist with regard to process model type.

RATIONALE FOR API

This API allows aworkflow participant to start a created process instance. It is anticipated that vendor’s
implementations will be of at least 2 types: one in which the creation of a process instance and the starting
of the same are a single functionality and another in which this functionality is separate. The callsin this
API definition are thus separated to accommodate both types of implementation. Vendors that provide the
single functionality will implement the creation and start of a process through the creation of atemporary
(possibly local) proc_i nst _i d through WM CreateProcess| nstance, assign attributes to it and then call
WM StartProcess.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Create/ Start Process Instance
Event Code: WM StartedProcessl nstance
Version 2.0 Page 32 of 32

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.10 WM TerminatePr ocessl nstance

NAME
WM TerminateProcessl nstance - Terminate a process instance.

DESCRIPTION

This command provides the capability of gracefully terminating a process without aborting the process
instance. Return from this call does not imply that the process instance has terminated, for example, the
process instance could be stopped when currently running activities are complete. The exact behavior of
currently running activities is system dependent.

WMTEr r Ret Type VWMTer m nat ePr ocessl nst ance (
in WJIPSessi onHandl e psessi on_handl e,

in WMIPProclnst!| D pproc_inst_id)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_inst_id A pointer to a structure that indicates the process instance that you want to
terminate.

ERROR RETURN VALUE

The error return value for this function will include one or more of the following error codes (see Error
Return Codes section):

WW_SUCCESS
W | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_| NSTANCE

REQUIREMENTS

None
RATIONALE FOR API

To alow a process instances to be terminated.
AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Instance State
Event Code: WM TerminatedProcessl nstance
Version 2.0 Page 33 of 33

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.11 WM OpenProcessl nstanceStatesL ist

NAME

WM OpenProcessl nstanceStatesL ist - Specifies and opens the query to produce the list of states of the
process instance that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of states for a process instance. The command will also
return, optionally, the total count of states available. If the count is requested and the implementation does
not support it, the command will return apcount value of -1. The meaning of states is dependent upon the
particular WFM Engine implementation. For example, the process instance can have states such as
suspended or in-progress.

One of the uses of this AP, together with the corresponding fetch and close calls isto allow aworkflow
application to query the Workflow Engine for the available states of the process instance that match the
filter criterion, in order to offer thislist to the application user. If pproc_i nst _state_filter iSNULL, then
the function, with the corresponding fetch calls will return the list of ALL states available for the process
instance.

WMTEr r Ret Type VWIOpenPr ocessl nst anceSt at esLi st (

i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst 1 D pproc_inst_id,
WMTPFi | ter pproc_inst_state_filter,
WMTBool ean count _fl ag,

out WMTPQuer yHandl e pquery_handl e,

out WMTPI nt 32 pcount)

>

5151

=}

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this
. . action.
pproc_i nst_id . Pointer to a structure containing the unique process instance ID.
pproc_inst_state_filter Filter associated with the processinstance state.
count _flag Boolean flag that indicates if the total count of process instance states
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of statesfor this process instance.
ERROR RETURN VALUE
WM_SUCCESS

WV | NVALI D_SESS| ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE

Version 2.0 Page 34 of 34
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.12 WM FetchProcessl nstanceState

NAME

WM FetchProcessl nstanceState - Returns the next process instance state from the list of states of the
process instance that match the filter criterion.

DESCRIPTION

This command returns a process instance state. This fetch function will return subsequent process instance
states after every call. The fetch processis complete when the function returns the error Wvi NO_MORE_DATA.

WMTEr r Ret Type VWWFet chPr ocessl nst anceSt at e (
in WJTIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMTPProcl nst State pproc_i nst_state)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the
. WM OpenProcess| nstanceStatesL ist query command.
pproc_inst_state Pointer to a buffer area provided by the client application where the state

name will be placed.

ERROR RETURN VALUE

WW_SUCCESS

WV | NVALI D_SESSI ON_HANDLE
WV | NVALI D_QUERY_HANDLE
VW NO_MORE_DATA

Version 2.0 Page 35 of 35
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.13 WM CloseProcessl nstanceStatesL ist

NAME
WM CloseProcessl nstanceStatesList - Closes the query for process instance states.

DESCRIPTION

WMTEr r Ret Type VWMCI 0sePr ocessl nst anceSt at esLi st (
in WJTPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the

WM OpenProcess| nstanceStatesL ist query command.

ERROR RETURN VALUE

WW_SUCCESS
W | NVALI D_SESSI ON_HANDLE
WV | NVALI D_QUERY_HANDLE

Version 2.0 Page 36 of 36
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.14 WM ChangePr ocessl nstanceState

NAME
WM ChangePr ocessl nstanceState - Changes the state of the named process instance.

DESCRIPTION

This command is defined to allow a process instance to be changed temporarily to a specific state such as
suspended.

Execution of this command will cause the single process instance that is named to be transitioned to a new
state. In this case, the meaning of al states is dependent upon the particular WFM Engine implementation.
This command will set the state attribute of the process instance to a state such as suspended or running.

WMTEr r Ret Type VWWMChangePr ocessl nst anceSt at e (

i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst 1 D pproc_inst_id,
WMTPPr ocl nst State pproc_i nst_state)

515

>

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_i nst_id Pointer to a structure containing a unique process instance ID.
pproc_inst_state Pointer to a structure that contains the name of the process state that you

want to change the instance to.

ERROR RETURN VALUE

WW_SUCCESS
W | NVALI D_SESSI ON_HANDLE
WV | NVALI D_PROCESS_| NSTANCE
W | NVALI D_STATE

WW_TRANSI TI ON_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique 1D within an administrative scope.
RATIONALE FOR API

This APl allows the possible intervention of aworkflow participant in a running process.
AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process I nstance State
Event Code: WM ChangedProcess| nstanceState
Version 2.0 Page 37 of 37

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.15 WM OpenProcessl nstanceAttributesList

NAME

WM OpenProcessl nstanceAttributeslL ist - Specifies and opens the query to produce the list of attributes
that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of attributes for a process instance. The command will
also return, optionally, the total count of attributes available. If the count is requested and the
implementation does not support it, the command will return apcount value of -1.

One of the uses of this AP, together with the corresponding fetch and close calls isto allow aworkflow
application to query the Workflow Engine for the available attributes that can be assigned to the process
instance, in order to offer thislist to the application user. Attribute values can be obtained as well provided
that a buffer of enough size is passed in the fetch call. Individua attribute values can aso be retrieved with
the WM GetProcessl nstanceAttributeValue call. If pproc_inst_attr_filter iSNULL, thenthe
function, with the corresponding fetch calls will return the list of ALL attributes available for the process
instance.

WMTEr r Ret Type VWIOpenPr ocessl nst anceAttri but esLi st (
i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst 1 D pproc_inst _id,

WMTPFi | ter pproc_inst_attr_filter,
WMTIBool ean count _fl ag,

out WMTPQuer yHandl e pquery_handl e,

out WMTPI nt 32 pcount)

=}

515151

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_i nst_id _ Pointer to a structure containing the unique process instance ID.
pproc_inst_attr_filter Filter associated with the process instance attributes.
count _flag Boolean flag that indicates if the total count of process instance attributes
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of attributes for this process instance.
ERROR RETURN VALUE
WM_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_| NSTANCE

Version 2.0 Page 38 of 38
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.16 WM FetchProcessl nstanceAttribute

NAME

WM FetchProcessl nstanceAttribute - Returns the next process instance attribute from the list of attributes
that match the filter criterion.

DESCRIPTION

This command returns a process instance attribute. This fetch function will return subsequent process
instance attributes after every call. The fetch process is complete when the function returns the error

WM _NO_MORE_DATA. The fetch function will return the attribute value as well in a buffer specified in the call.
If buf fer _si ze iISNULL then the attribute value will not be returned. If buf f er _si ze is not large enough to
hold the attribute value then the function will return as much of the attribute value as can be fit in the buffer.
The proper length of the attribute value is availableintheattri but e_I engt h field. The application can
comparetheattribute_l engt h with thebuf f er _si ze to determine if the full value was returned.

WMTEr r Ret Type VWWFet chPr ocessl nst anceAttri bute (
in WMJTIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMTPAttrName pattri bute_nane,
out WMTPI nt 32 pattribute_type,
out WMIPI nt 32 pattribute_|l ength,
out WMTPText pattribute_val ue,
in WM nt32 buffer_size)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
action.
pquery_handl e Identification of the specific query handle returned by the
. WM OpenProcessl nstanceAttributesL ist query command.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_val ue Pointer to a buffer area provided by the client application where the
. attribute value will be placed.
buffer_size Size of the buffer.
ERROR RETURN VALUE
WM_SUCCESS

WV | NVALI D_SESSI ON_HANDLE
WV | NVALI D_QUERY_HANDLE
WVM_NO_MORE_DATA

Version 2.0 Page 39 of 39
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.17 WM CloseProcessl nstanceAttributesList

NAME
WM CloseProcessl nstanceAttributesList - Closes the query for process instance attributes.

DESCRIPTION

WMTEr r Ret Type VWMCI 0sePr ocessl nst anceAttri but esLi st (
in WMIPSessi onHandl e psessi on_handl e,
in WMrPQuer yHandl e pquery_handl e)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e I dentification of the specific query handle returned by the

WM OpenProcessl nstanceAttributesList query command.

ERROR RETURN VALUE

WW_SUCCESS
WW_| NVALI D_SESSI ON_HANDLE
WV | N\VALI D_QUERY_HANDLE

Version 2.0 Page 40 of 40
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.18 WM GetProcessl nstanceAttributeValue

NAME

WM GetProcessl nstanceAttributeValue - Returns the value, type and length of a process instance
attribute specified by the proc_inst _id andattri but e_nanme parameters.

DESCRIPTION

This command will return the value of a process instance attribute in the buffer specified in the call.

WMTEr r Ret Type VWMGet Pr ocessl nst anceAttri but eVal ue (
i WMTIPSessi onHandl e psessi on_handl e,

=]

in WMIPProclnst|D pproc_inst_id,
in WMTPAttrName pattribute_nane,
out WMTPInt 32 pattribute_type,
out WMIPI nt 32 pattribute_|l ength,
out WMTPText pattribute_val ue,
in WM nt32 buffer_size)
Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_i nst_id Pointer to a structure containing the unique process instance ID.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_|ength Pointer to the length of the attribute value.
pattribute_val ue Pointer to a buffer area provided by the client application where the
_ attribute value will be placed.
buffer_size Size of the buffer to be filled.
ERROR RETURN VALUE

WW_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | N\VALI D_ATTRI BUTE

WW_| NSUFFI CI ENT_BUFFER S| ZE

Version 2.0 Page 41 of 41
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.2.19 WM AssignProcessl nstanceAttribute

NAME

WM AssignProcessl nstanceAttribute - Assign the proper attribute to process instance(s)
DESCRIPTION

This command tells the WFM Engine to assign an attribute, change an attribute or to change the value of an
attribute of a processinstance.

This command changes the value of an attribute of aprocessinstance. Attributes of process instances are
of the kind called Process Control and Process Relevant Data. These attributes are specified as
quadruplets of name, type, length and value.

WMTEr r Ret Type WWAsSSi gnProcessl nstanceAttri bute (
i WMIPSessi onHandl e psessi on_handl e,

>

in WMIPProclnst!|D pproc_inst_id,
in WMTPAttrName pattribute_nane,
in WMTInt32 attribute_type,
in WM nt32 attribute_| ength,
in WMIPText pattribute_val ue)
Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this
. . action.
pproc_inst_id Pointer to a structure containing the process instance 1D that indicates the
. process for which the attribute will be assigned.
pattribute_name Pointer to the name of the attribute.
attri bute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_val ue Pointer to a buffer area provided by the client application where the attribute

value will be placed.

ERROR RETURN VALUE

WW_SUCCESS

WV | NVALI D_SESSI ON_HANDLE

WW_| NVALI D_PROCESS_| NSTANCE
WV | N\VALI D_ATTRI BUTE

WW_ATTRI BUTE_ASSI GNVENT_FAI LED

REQUIREMENTS

None
RATIONALE FOR API

For various business reasons, certain pieces of work are required to be handled with particular attributes
(e.g. priority) relative to other pieces of like work. This command allows attributes to be set on those pieces
of work. In some cases, these attributes are determined by the WFM product based upon data values
existing during process execution. The setting of these attributes through the use of this APl is provided to
cover the cases where applications set them upon requests from users.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Version 2.0 Page 42 of 42
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Audit Data Type: Change Process I nstance Attributes
Event Code: WM AssignProcessl nstanceAttributes
Version 2.0 Page 43 of 43

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.3 WAPI Activity Control Functions

Activity Control Functions can be defined as those which change the operational state of one or more
activity instances. These API calls are intended for use by the WFM end user. However, some of the API
calls, or parameters within some of the APl calls, may affect multiple users and would normally be
restricted to the use of a process administrator.

6.3.1 WMOpenActivitylnstanceStatesL ist

NAME

WM OpenActivityl nstanceStatesL ist - Specifies and opens the query to produce the list of states of the
activity instance that match the filter criterion.

DESCRIPTION

This command will return aquery handle for alist of states for an activity instance. The command will aso
return, optionally, the total count of states available. If the count is requested and the implementation does
not support it, the command will return apcount value of -1.

One of the uses of this AP, together with the corresponding fetch and close calls isto allow aworkflow
application to query the Workflow Engine for the available states of the activity instance that match the
filter criterion, in order to offer thislist to the application user. If pact _i nst _state_filter iSNULL, then
the function, with the corresponding fetch calls will return the list of ALL states available for the activity
instance.

WMIEr r Ret Type VWIOpenActi vityl nst anceSt at esLi st (

in WJTIPSessi onHandl e psessi on_handl e,
i WMTPPr ocl nst 1 D pproc_inst_id,
WMIPActi vitylnstID pactivity_inst_id,
WMTPFi | ter pact_inst_state filter,
WMTIBool ean count _fl ag,
out WMTPQuer yHandl e pquery_handl e,
out WMTPI nt 32 pcount)

=}

515151

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_i nst a d _ Pointer to a structure containing a unique process instance ID.
pacti vi ty_inst_i d_ Pointer to a structure containing the unique activity instance ID.
pact_inst_state_filter Filter associated with the activity instance state.
count _flag Boolean flag that indicates if the total count of activity instance states
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of states for this activity instance.
ERROR RETURN VALUE
Wk_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_| NSTANCE
WW_I| NVALI D_ACTI VI TY_I NSTANCE

Version 2.0 Page 44 of 44
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.3.2 WMFetchActivityl nstanceState

NAME

WM FetchActivityl nstanceState - Returns the next activity instance state, from the list of states of the
activity instance that match the filter criterion.

DESCRIPTION

This command returns an activity state. This fetch function will return subsequent activity states after every
call. Thefetch process is complete when the function returns the error Wy NO_MORE_DATA.

WMTEr r Ret Type WWWFet chActi vityl nstanceState (
in WJTIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMTPActivitylnstState pactivity_inst_state)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
action.
pquery_handl e Identification of the specific query handle returned by the
WM OpenActivityl nstanceStatesL ist query command.
pactivity_inst_state Pointer to a buffer area provided by the client application where the state

name will be placed.

ERROR RETURN VALUE

WW_SUCCESS

WV | NVALI D_SESSI ON_HANDLE
WV | NVALI D_QUERY_HANDLE
VW NO_MORE_DATA

Version 2.0 Page 45 of 45
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.3.3 WM CloseActivityl nstanceStatesL ist

NAME
WM CloseActivityl nstanceStatesL ist - Closes the query for activity instance states.

DESCRIPTION

WMTEr r Ret Type VWMCI 0seAct i vi tyl nstanceSt at esLi st (
in WJTPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e I dentification of the specific query handle returned by the

WM OpenAdctivityl nstanceStatesl ist query command.

ERROR RETURN VALUE

WW_SUCCESS
W | NVALI D_SESSI ON_HANDLE
WV | N\VALI D_QUERY_HANDLE

Version 2.0 Page 46 of 46
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.3.4 WM ChangeActivityl nstanceState

NAME
WM ChangeActivityl nstanceState - Changes the state of the named activity instance.
DESCRIPTION

This command directs a WFM Engine to change the state of a single activity instance within a process
instance. This allows the state of one activity instance to be changed, without impacting othersin the
process instance.

For example, this command will be used to change the state of an activity instance to suspended. This
command can be used afterwards to change the state of the activity instance back to running. The
implementation documentation will provide the names and semantics of the supported activity states for a
particular implementation.

WMTEr r Ret Type VWChangeActi vityl nstanceState (
i WMIPSessi onHandl e psessi on_handl e,
i WMTPPr ocl nst 1 D pproc_inst _id,
in WMIPActivitylnstlD pactivity_inst_id,
in WMIPActivitylnstState pactivity_inst_state)

>

=}

Argument Name Description

psessi on_handl e Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing a unique process instance 1D.

pactivity_inst_id Pointer to structure containing the activity instance 1D of the activity
whose state to change.

pactivity_inst_state Pojnter to astructure that contains the name of the activity instance state
that you want to change to.
ERROR RETURN VALUE

WW_SUCCESS

WV | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE
WW_I| NVALI D_ACTI VI TY_I NSTANCE
WV | NVALI D_STATE

VW TRANSI TI ON_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique 1D within an administrative scope.
Each activity instance must have a unique ID within a process instance.

RATIONALE FOR API

A workflow participant may wish to modify the state attributes associated with a particular activity instance.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Activity Instance State
Event Code: WM ChangedA ctivityl nstanceState
Version 2.0 Page 47 of 47

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.3.5 WMOpenActivityl nstanceAttributeslList

NAME

WM OpenActivityl nstanceAttributesL ist - Specifies and opens the query to produce the list of activity
attributes that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of attributes for an activity instance. The command will
also return, optionally, the total count of attributes available. If the count is requested and the
implementation does not support it, the command will return apcount value of -1.

One of the uses of this AP, together with the corresponding fetch and close calls isto allow aworkflow
application to query the Workflow Engine for the available attributes that can be assigned to the activity
instance, in order to offer thislist to the application user. Attribute values can be obtained as well provided
that a buffer of enough size is passed in the fetch call. Individua attribute values can aso be retrieved with
the WM GetActivityl nstanceAttributeValuecall. If pact _inst _attr_filter iSNULL, then the function,
with the corresponding fetch calls will return the list of ALL attributes available for the activity instance.

WMTEr r Ret Type VWIOpenActi vityl nstanceAttri butesList (
i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst 1 D pproc_inst_id,

WMTPActi vitylnstlI D pactivity_inst_id,
WMTPFi | ter pact _inst_attr_filter,
WMTBool ean count _fl ag,

out WMTPQuer yHandl e pquery_handl e,

out WMTPI nt 32 pcount)

5151515

=}

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this
. . action.
pproc_i nst - d . Pointer to a structure containing the unique process instance ID.
pacti vi ty_inst_i fj Pointer to a structure containing the unique activity instance I1D.
pact_inst_attr_filter Fjjter associated with the activity instance attributes.
count _fl ag Boolean flag that indicatesif the total count of activity instance attributes
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of attributes for this activity instance.
ERROR RETURN VALUE
WM SUCCESS

WV | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE
WW_I| NVALI D_ACTI VI TY_I NSTANCE

Version 2.0 Page 48 of 48
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.3.6 WM FetchActivityl nstanceAttribute

NAME

WM FetchActivityl nstanceAttribute - Returns the next activity instance attribute from the list of activity
attributes that match the filter criterion.

DESCRIPTION

This command returns a activity instance attribute. This fetch function will return subsequent activity
instance attributes after every call. The fetch process is complete when the function returns the error

WM _NO_MORE_DATA. The fetch function will return the attribute value as well in a buffer specified in the call.
If buf fer _si ze iISNULL then the attribute value will not be returned. If buf f er _si ze is not large enough to
hold the attribute value then the function will return as much of the attribute value as can be fit in the buffer.
The proper length of the attribute value is availableintheattri but e_I engt h field. The application can
comparetheattribute_I engt h with thebuf f er _si ze to determine if the full value was returned.

WMTEr r Ret Type VWFet chActi vityl nstanceAttribute (
in WMJTIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMTPAttrName pattri bute_nane,
out WMTPInt 32 pattribute_type,
out WMIPI nt 32 pattribute_|l ength,
out WMTPText pattribute_val ue,
in WM nt32 buffer_size)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
action.
pquery_handl e Identification of the specific query handle returned by the
. WM OpenActivityl nstanceAttributesList query command.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_val ue Pointer to a buffer area provided by the client application where the attribute
. value will be placed.
buffer_size Size of the buffer.
ERROR RETURN VALUE
WhM_SUCCESS

WV | NVALI D_SESS| ON_HANDLE
W | N\VALI D_QUERY_HANDLE
WW_NO_MORE_DATA

Version 2.0 Page 49 of 49
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.3.7 WM CloseActivitylnstanceAttributesL ist

NAME
WM CloseActivityl nstanceAttributesL ist - Closes the query for activity instance attributes.

DESCRIPTION

WMTEr r Ret Type VWWCl oseActi vi tyl nstanceAttri butesLi st (
in WJTPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e I dentification of the specific query handle returned by the

WM OpenAdctivityl nstanceAttributesL ist query command.

ERROR RETURN VALUE

WW_SUCCESS
WW_| NVALI D_SESSI ON_HANDLE
WV | N\VALI D_QUERY_HANDLE

Version 2.0 Page 50 of 50
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.3.8 WM GetActivityl nstanceAttributeValue

NAME

WM GetActivityl nstanceAttributeValue - Returns the value, type and length of an activity instance
attribute specified by the pproc_i nst _i d, pactivity_inst_id andattribute_name parameters.

DESCRIPTION

This command will return the value of an activity instance attribute in the buffer specified in the call.

WMTEr r Ret Type VWMGet Acti vityl nstanceAttri buteVal ue (
in WJTIPSessi onHandl e psessi on_handl e,

WMTPPr ocl nst 1 D pproc_inst _id,

WMIPActi vitylnstI D pactivity_inst_id,

WMTPAt t r Nanme pattri bute_nane,

out WMTPI nt 32 pattribute_type,

out WMTPInt 32 pattribute_|l ength,

out WMTPText pattribute_val ue,

in WM nt32 buffer_size)

S5

=11

o
c
—

Argument Name Description

psessi on_handl e Pointer to a structure containing information about the context for this

action.
Pointer to a structure containing the unique process instance ID.
Pointer to a structure containing the unique activity instance ID.

pproc_inst_id
pactivity_ inst_id

pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_|ength Pointer to the length of the attribute value.
pattribute_val ue Pointer to a buffer area provided by the client application where the
. attribute value will be placed.
buffer_size Size of the buffer to be filled.
ERROR RETURN VALUE
W SUCCESS

WV | NVALI D_SESS| ON_HANDLE
WV | N\VALI D_ATTRI BUTE
WM | NSUFFI Cl ENT_BUFFER SI ZE

Version 2.0 Page 51 of 51
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.3.9 WM AssignActivityl nstanceAttribute

NAME
WM AssignActivityl nstanceAttribute - Assign an attribute to an activity instance.
DESCRIPTION

This command tells the WFM Engine to assign an attribute, to change an attribute or to change the value of
an attribute of the activity instance within a named process definition.

This command changes the value of the attributes of aactivity instance. These attributes of activity
instances are of the kind called Process Control and Process Relevant Data. These attributes are specified
as quadruplets of name, type, length and value.

WMTEr r Ret Type WASSI gnActivitylnstanceAttribute (

i WMTIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pproc_def _id,

WMIPActi vitylnstI D pactivity_inst_id,
WMTPAt t r Nanme pattri bute_nane,

WMTI nt 32 attribute_type,

WMTI nt 32 attribute_l ength,

WMIPText pattribute_val ue)

>

515151515151

Argument Name Description

psessi on_handl e Pointer to a structure containing information about the context for this action.

pproc_i nst _i d Pointer to a structure containing the unique process instance ID.

pactivity_inst_id Pojnter to astructure containing the activity instance identification for which
the attribute will be assigned.

pattribute_name Pointer to the name of the attribute.

attribute_type Type of the attribute.

attribute_length | ength of the attribute value.

pattribute_val ue Pointer to a buffer area provided by the client application where the attribute
value will be placed.

ERROR RETURN VALUE

WW_SUCCESS

W | NVALI D_SESSI ON_HANDLE

WM | NVALI D_PROCESS_| NSTANCE
WW_| NVALI D_ACTI VI TY_I NSTANCE
WV | N\VALI D_ATTRI BUTE

WW_ATTRI BUTE_ASSI GNVENT_FAI LED

REQUIREMENTS

None

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign Activity Instance Attributes
Event Code: WM A ssignedActivitylnstanceAttributes
Version 2.0 Page 52 of 52

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.4 WAPI Process Status Functions

The process status functions are intended to provide a view of the work done, work to be done, work
associated with aworkflow participant or group of workflow participants, etc. The status queries may be
requested by a normal workflow participant or may be requested by a manager or process administrator who
wishes to view the progress of work within his’/her domain.

The status API calls are structured such that they provide views ranging from a view of global work to a
view of work within asingle processinstance. These views are as follows:

1| All the process instances associated with a WM (Open+Fetch+Close)Process| nstancesList
process definition.
2| A view of asingle process instance. WM GetProcessl nstance

In addition, various filters (parameters) are provided with the calls such that the information returned may
be tailored.

The API functions associated with these API calls are described in this section.

Version 2.0 Page 53 of 53
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.4.1 WM OpenProcessl nstancesL ist

NAME

WM OpenProcessl nstancesList - Specifies and opens the query to produce alist of process
instances that match the filter criterion.

DESCRIPTION

This command will return aquery handle for alist of processinstances that match the specified value for
the attribute. The command will also return, optionally, the total count of instances available. If the count
is requested and the implementation does not support it, the command will return apcount value of -1.

This command will be used to set up awide variety of queries of processinstances. For example, this
command will be used to set up the query for alist of completed or suspended process instances. If
pproc_inst_filter iSNULL, then the function, with the corresponding fetch callswill return the list of
ALL accessible process instances.

WMTEr r Ret Type VWIOpenPr ocessl nst ancesLi st (

i WMTIPSessi onHandl e psessi on_handl e,
i WMTPFi | ter pproc_inst fllter
WMTIBool ean count _fl ag,

out WMTPQuer yHandl e pquery_handl e,
out WMTPI nt 32 pcount)

>

8l51515

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pproc_inst_filter Pojnter to astructure containing the information for this request.
count_flag Boolean flag that indicates if the total count of process instances should be
returned.
pquery_handl e Pointer to a structure containing a unicque query information.
pcount Total number of process instances that fulfill the filter condition.
ERROR RETURN VALUE
W SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | NVALI D_FI LTER

REQUIREMENTS
None
RATIONALE FOR API

The requester of the information needs to know what work of a particular type isin process or needs to
know what work has compl eted.

Version 2.0 Page 54 of 54
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.4.2 WM FetchProcessl nstance

NAME

WM FetchProcessl nstance - Returns the next process instance from the list of process instances
that met the selection criterion stated in the corresponding WM OpenProcess nstancesL st call.

DESCRIPTION

This command returns a process instance. This fetch function will return subsequent process instances after
every call. The fetch processis complete when the function returns the error Wy NO_MORE_DATA.

WMTEr r Ret Type VWWFet chPr ocessl nst ance (
in WJTPSessi onHandl e psessi on_handl e,

in WMIPQueryHandl e pquery_handl e,
out WMTPProcl nst pproc_i nst_buf _ptr)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the

. WM OpenProcessl nstancesL ist query command.
pproc_inst_buf_ptr Ppojnter to abuffer area provided by the client application where the set of
process instances will be placed.

ERROR RETURN VALUE

WW_SUCCESS

WV | NVALI D_SESSI ON_HANDLE
W | NVALI D_QUERY_HANDLE
VW NO_MORE_DATA

REQUIREMENTS

None

Version 2.0 Page 55 of 55
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.4.3 WM CloseProcessl nstancesL ist

NAME
WM CloseProcessl nstancesList - Closes the query of process instances.

DESCRIPTION

This command will close the query of process instances that match the specified query attribute, specified
in the WM OpenProcessl nstancesL ist command. The query handle can no longer be used.

WMTEr r Ret Type VWCl 0sePr ocessl nst ancesLi st (
in WJTPSessi onHandl e psessi on_handl e,

i WMIPQuer yHandl e pquery_handl e)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the

WM OpenProcessl nstancesList query command.

ERROR RETURN VALUE

WW_SUCCESS
WV | NVALI D_SESSI ON_HANDLE
WV | NVALI D_QUERY_HANDLE

Version 2.0 Page 56 of 56

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.4.4 WM GetProcessl nstance

NAME

WM GetProcessl nstance - Return a specific process instance record.

DESCRIPTION

The WM GetPr ocessl nstance provides information about what work has been done within a
process instance and what is the current work being done within the process instance.

WWTEr r Ret Type VWMGet Pr ocessl nst ance (

Argument Name
psessi on_handl e
pproc_inst_id
pproc_i nst

=}

WMIPSessi onHandl e psessi on_handl e,
in WMIPProclnstlD pproc_inst_id,
ut WMTPProcl nst pproc_inst)

Description

Pointer to a structure containing information about the context for this action.
Pointer to the process instance identification.

Pointer to a structure containing the requested process instance information.
Includes the state and other attributes of the process instance.

ERROR RETURN VALUE

WM_SUCCESS

WV | NVALI D_SESS| ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE

REQUIREMENTS

None

Version 2.0

Page 57 of 57

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.5 WAPI Activity Status Functions

The process status functions are intended to provide a view of the work done, work to be done, work
associated with aworkflow participant or group of workflow participants, etc. The status queries may be
requested by a normal workflow participant or may be requested by a manager or process administrator who
wishes to view the progress of work within his’/her domain.

The status API calls are structured such that they provide views ranging from a view of global work to a
view of work within asingle activity instance. These views are as follows:

1| All the activity instances associated to a WM (Open+Fetch+Close)Activityl nstancesL ist
process definition or instance

2| A view of asingle activity within a process WM GetActivityl nstance
instance.

In addition, various filters (parameters) are provided with the calls such that the information returned may
be tailored.

The API functions associated with these API calls are described in this section.

Version 2.0 Page 58 of 58
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.5.1 WM OpenActivitylnstancesL ist

NAME

WM OpenActivityl nstancesList - Specifies and opens the query to produce alist of activity
instances that match the criterion of the filter.

DESCRIPTION

This command will return aquery handle for alist of activity instances that match the criterion of the filter.
The command will also return, optionally, the total count of activity instances available. If the count is
requested and the implementation does not support it, the command will return apcount value of -1.

This command will be used to set up awide variety of queries of activity instances. For example, this
command will be used to set up the query for alist of completed or suspended activity instances. If
pactivity_inst_filter iSNULL, then the function, with the corresponding fetch calls will return the list
of ALL accessible activity instances.

WMTEr r Ret Type VWOpenActi vityl nst ancesLi st (

i WMTIPSessi onHandl e psessi on_handl e,
WMTPFi | ter pactivity_ inst_filter,
WMTIBool ean count _fl ag,

ut WMTPQuer yHandl e pquery_handl e,

out WMTPI nt 32 pcount)

>

5151

o

Argument Name Description

psession_handle - Pointer to a structure containing information about the context for this action.

pactivity_inst_filter Pointer to astructure containing the information for this request.

count _flag Boolean flag that indicates if the total count of activity instances should be
returned.

pquery_handl e Pointer to a structure containing a unique query information returned by this
function.

pcount Total number of activity instances that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | NVALI D_FI LTER

REQUIREMENTS
None
RATIONALE FOR API

The requester of the information needs to know what work of a particular type isin process or needs to
know what work has compl eted.

Version 2.0 Page 59 of 59
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.5.2 WMFetchActivityl nstance

NAME

WM FetchActivityl nstance - Returns the next activity instance from the list of activity instances
that met the selection criterion in the corresponding WM OpenActivitylnstancesList call.

DESCRIPTION

This command returns an activity instance. This fetch function will return subsequent activity instances
after every call. The fetch process is complete when the function returns the error Wi NO_MORE_DATA.

WMTEr r Ret Type VWFet chActi vi tyl nstance (
in WJTIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMTPActivitylnst pactivity_inst)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the
o WM OpenActivityl nstancesList query command.
pactivity_inst Pointer to a buffer area provided by the client application where the set of activity

instances will be placed.

ERROR RETURN VALUE

WW_SUCCESS

WV | NVALI D_SESSI ON_HANDLE
W | N\VALI D_QUERY_HANDLE
VW NO_MORE_DATA

REQUIREMENTS

None

Version 2.0 Page 60 of 60
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.5.3 WM CloseActivityl nstancesL ist

NAME
WM CloseActivityl nstancesList - Closes the query of activity instances.
DESCRIPTION

This command will close the query of activity instances that match the specified query attribute, specified
in the WM OpenActivityl nstancesList command. The query handle can no longer be used.

WMTEr r Ret Type VWMCl oseAct i vityl nstancesLi st (
in WMIPSessi onHandl e psessi on_handl e,
in WMrPQuer yHandl e pquery_handl e)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the

WM OpenActivityl nstancesList query command.

ERROR RETURN VALUE

WW_SUCCESS
WV | NVALI D_SESSI ON_HANDLE
WV | N\VALI D_QUERY_HANDLE
REQUIREMENTS

None

Version 2.0 Page 61 of 61
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.5.4 WM GetActivityl nstance

NAME
WM GetActivityl nstance - Returns the record of a specific activity instance.
DESCRIPTION

The WM GetActivityl nstance command provides status about an activity within a process
instance.

WMTEr r Ret Type WMGet Acti vi tyl nstance (
i WMIPSessi onHandl e psessi on_handl e,

=]

in WMIPProcl nst!|D pproc_inst_id,

in WMIPActivitylnstlD pactivity_inst_id,

out WMTPActivitylnst pactivity_inst)
Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pproc_i nst i d _ Pointer to a structure containing the process instance identification.
pactivity Inst_l d Pointer to astructure containing the identification of the activity instance.
pactivity_inst Pointer to a structure containing the activity instance information.
ERROR RETURN VALUE

WW_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_| NSTANCE
WW_I| NVALI D_ACTI VI TY_I NSTANCE

REQUIREMENTS

None

Version 2.0 Page 62 of 62
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6 WAPI Worklist Functions

The WAPI worklist API calls provide workflow participants access to information about work to which
they have been assigned. As described by the WFM Coalition reference model, a process consists of a set
of activities connected in such away to control the sequencing of application invocation. An activity is
associated with one or more applications to be invoked and a so, during run time, is associated with the
person(s) who has been assigned to do the work. Depending upon a WFM product’ s implementation, a
workflow participant may be assigned one or more pieces of work at any onetime. Each piece of work
assigned to aworkflow participant is called a‘work item’ and the collection of all work items assigned to a
workflow participant is called that workflow participant’s ‘worklist’.

(Note: To clarify the difference between an ‘activity’ and a‘work item’ the following discussion is
included. When a processis being defined (build time), an ‘activity’ is the construct used to define a piece
of work to be done. It serves as atype of anchor point for further descriptions of that work to be done (i.e.,
the name of the application to be invoked, possibly areference to skills needed to do the work, a symbolic
name denoting the network address where the application isto be executed, etc.). During run time, when
the activity is ready to be executed and one or more candidate persons are assigned to do the work, awork
item is created and placed on that person(s) worklist. So, even though an activity and awork item both
represent a piece of work, they come into existence at different pointsin time, there may be more than one
work item for an activity and some operational characteristics may be different.)

A worklist then is defined as: the result of an implementation-defined query against the work item space. It
isalist of work items and awork item is one element in aworklist.

The API callsin this section exist for the manipulation of work items and worklists.

Version 2.0 Page 63 of 63
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.1 WM OpenWorkList

NAME

WM OpenWorkList - Specifies and opens the query to produce the worklist that matches the
criterion of thefilter.

DESCRIPTION

This command provides the capability of returning alist of work items assigned to a specified workflow
participant or aworkgroup. The requester may be making the request on behalf of himself or may be a
manager wanting to know what work has been assigned to a particular person or a workgroup.

A query handle will be returned for the list of work items that match the specified value for the attribute.
The command will also return, optionally, the total count of work items available. If the count is requested
and the implementation does not support it, the command will return apcount value of -1. If
pworklist_filter iSNULL, then the function, with the corresponding fetch calls will return the list of
ALL accessible work items.

WMIEr r Ret Type VWOpenWor kLi st (

i WMIPSessi onHandl e psessi on_handl e,
WMTPFi | ter pworklist_fi Iter
WMTIBool ean count _fl ag,
out WMTPQuer yHandl e pquery_handl e,
out WMTPI nt 32 pcount)

=

2l515

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pworklist_filter Pointer to a structure containing the filter information for this request.
count_flag Boolean flag that indicates if the total count of work items should be returned.
pquery_handl e Pointer to a structure containing a unique query information returned by this
function.

pcount Total number of work items that fulfill the filter condition.
ERROR RETURN VALUE

W SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | N\VALI D_FI LTER

REQUIREMENTS
None

RATIONALE FOR API

A workflow participant must be able to determine what work has been assigned. A manager must be able to
determine who has work and what work is to be done within a department.

Version 2.0 Page 64 of 64
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.2 WMFetchWorkltem

NAME

WM FetchWorkltem - Returns the next work item from the worklist that met the selection criterion in the
corresponding WM OpenWorkList call.

DESCRIPTION

This command returns awork item. This fetch function will return subsequent work items after every call.
The fetch process is complete when the function returns the error Wv NO_MORE_DATA.

WMTEr r Ret Type VWWFet chWor kit em (
in WMJIPSessi onHandl e psessi on_handl e,

in WMIPQuer yHandl e pquery_handl e,

out WMIPWorkl tem pwork_item

Argument Name Description

psessi on_handl e Pointer to a structure containing information about the context for this action.

pquery_handl e I dentification of the specific query handle returned by the WM OpenWorkL ist
_ query command.

pwor k_i t em Pointer to a buffer area provided by the client application where the set of work

item will be placed.

ERROR RETURN VALUE

WW_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | NVALI D_QUERY_HANDLE
WW_NO_MORE_DATA

Version 2.0 Page 65 of 65
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.3 WMCloseWorkList

NAME
WM CloseWorkList - Closes the query of work items.

DESCRIPTION

This command will close the query of work items that match the specified query filter, specified in the
WM OpenWorkList command. The query handle can no longer be used.

VWWTEr r Ret Type VWMCl oseWor kLi st (
in WJIPSessi onHandl e psessi on_handl e,

i WMIPQuer yHandl e pquery_handl e)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e I dentification of the specific query handle returned by the WM OpenWorkL st

query command.

ERROR RETURN VALUE

WW_SUCCESS
WV | NVALI D_SESSI ON_HANDLE
W | NVALI D_QUERY_HANDLE

Version 2.0 Page 66 of 66

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.4 WMGetWorkltem

NAME

WM GetWorkltem - Returns the record of a specific work item

DESCRIPTION

This command allows aworkflow participant to designate which piece of work he wishesto do. The viewer
may be selecting awork item from alist obtained by the WM OpenWorkList command.

This command operates on a single work item basis. This command execution need not imply that the
work item is reserved or locked.

WWTEr r Ret Type VWMGet Wor ki t em (
in WJIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst 1 D pproc_inst _id,

>

in WWTPWrkltem D pwork_itemid,

out WMTPWor kil t em pwork_item)
Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pproc_i nst | d Pointer to a structure containing the unique process instance ID.
pwork_itemid Pointer to a structure containing the work item identification for this request.
pwor k_i t em Pointer to a structure containing the work item being returned by this function.

ERROR RETURN VALUE

The error return value for this function will include one or more of the following error codes (see Error
Return Codes section):

WW_SUCCESS

W | NVALI D_SESSI ON_HANDLE

WM | NVALI D_PROCESS_| NSTANCE

WW_| NVALI D_WORKI TEM
REQUIREMENTS

The application issuing the command must have sufficient identification information to select the
work item desired.

RATIONALE FOR API
A workflow participant must be able to tell the WFM Engine which piece of work is to be selected.

AUDIT INFORMATION
The following audit information is directly related to this function and might be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Work Item State

Event Code: WM SelectedWorkltem

In this paticular case it is|eft to the implementation to realize a state change of the Work Item when a
WM GetWorkltem operation is invoked.

Version 2.0 Page 67 of 67
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.5 WM CompleteWorkltem

NAME
WM CompleteWorkltem - Tell the WFM Engine that this work item has been completed.
DESCRIPTION

This command allows aworkflow participant to tell the WFM Engine that awork item has been compl eted.
To change awork item's attributes, multiple calls to WM AssignWorkltemAttribute.

WMTEr r Ret Type VWIConpl et eVor kit em (
in WJTIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst 1 D pproc_inst _id,
WMTPWor ki t eml D pwor k_i tem i d)

=}

>

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
ppr oc_i nst | d Pointer to a structure containing the unique process instance ID.
pwork_itemid Pointer to a structure containing the work item identification for this request.
ERROR RETURN VALUE

VW SUCCESS

VWM _| NVALI D_SESSI ON_HANDLE
WV | NVALI D_PROCESS_| NSTANCE
VW _| NVALI D_WORKI TEM

REQUIREMENTS

None

RATIONALE FOR API

WFM products implement various ways to determine when an activity is complete. The use of the APl may
range from just a successful/unsuccessful indication to placing values in the completion state which might
cause the WFM Engine to select a future model navigation path from among many.

Typically, awork item will correspond to an activity instance. However the API should allow the existence
of multiple work items per activity, executed one at atime. So completion of awork item does not
necessarily mean that all work for an activity instance is completed. Completion of awork item could
trigger the start of the next work item that corresponds to that activity instance. The Workflow Engine will
determine the next work item based on the process definition.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Work Item State
Event Code: WM CompletedWorkltem

6.6.6 WM OpenWorkitemStatesL ist

NAME

WM OpenWorkitemStatesL ist - Specifies and opens the query to produce the list of states of workitem
that match the filter criterion.

Version 2.0 Page 68 of 68
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

DESCRIPTION

This command will return a query handle for alist of states for aworkitem. The command will also return,
optionally, the total count of definitions available. If the count is requested and the implementation does
not support it, the command will return apcount value of -1.

One of the uses of this AP, together with the corresponding fetch and close calls isto allow aworkflow
application to query the Workflow Engine for the available states of the workitem that match the filter
criterion, in order to offer thislist to the application user. For example, workitems can be in states such as
disabled (thus disallowing temporarily the creation of new process definitions), or enabled (thus allowing
again the creation of new process definitions based on the named definition). If pworkitem state_filter
isNULL, then the function, with the corresponding fetch calswill return the list of ALL states available for
the definition.

WMTET r Ret Type V\IVOpenW)r ki tentSt at esLi st (

WMTIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pwor ki tem.id,

WMIPFi | ter pworkitemstate filter,
WMTBool ean count _fl ag,

out WMIPQuer yHandl e pquery_handl e,

out WMTUI nt 32 pcount)

>

EEIEIEE

Argument Name Description
pseSSf On_hénd' e Pointer to a structure containing information about the context for this action.
pwor k! temid . Pointer to a structure containing the unique workitem ID.
pworkitemstate_filter Filter associated with the workitem state.
count _flag Boolean flag that indicates if the total count of process definition states
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of statesfor this process definition.
ERROR RETURN VALUE
WM _SUCCESS

WV | NVALI D_SESS| ON_HANDLE
W | NVALI D_PROCESS_DEFI NI TI ON

Version 2.0 Page 69 of 69
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.7 WMFetchWorkitemState

NAME

WM FetchWorkitemState - Returns the next workitem state, from the list of states of the workitem that
match the filter criterion.

DESCRIPTION

This command returns aworkitem state. This fetch function will return subsequent workitem states after
every call. The fetch processis complete when the function returns the error Wy NO_MORE_DATA.

WMTEr r Ret Type VWWFet chWor kit enSt at e (
in WJTIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMTPProcDef St at e pworkitem state)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the
. WM OpenWorkitemStatesl ist query command.
pwor ki tem st at e Pointer to a buffer area provided by the client application where the state name
will be placed.
ERROR RETURN VALUE
WW_SUCCESS

WV | NVALI D_SESS| ON_HANDLE
W | N\VALI D_QUERY_HANDLE
WW_NO_MORE_DATA

Version 2.0 Page 70 of 70
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.8 WM CloseWorkitemStatesL ist

NAME
WM CloseWorkitemStatesL ist - Closes the query for workitem states.

DESCRIPTION

WMTEr r Ret Type VWMCI oseWor ki t entSt at esLi st (
in WMIPSessi onHandl e psession_handl e,
in WJUrPQueryHandl e pquery_handl e)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e I dentification of the specific query handle returned by the

WM OpenWorkitemStatesL ist query command.

ERROR RETURN VALUE

WW_SUCCESS
WW_| NVALI D_SESSI ON_HANDLE
WV | N\VALI D_QUERY_HANDLE

Version 2.0 Page 71 of 71
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.9 WM ChangeWorkitemState

NAME
WM ChangeWorkitemState - Changes the state of the named workitem.

DESCRIPTION

This command is defined to allow aworkitem to be changed temporarily to a specific state such as
notRunning, or running. See Appendix G for adiscussion of states.

WMTEr r Ret Type VWIChangeWor ki t enfSt at e (

i WMTPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pwor ki tem.i d,
WMTPPr ocDef St at e pworkitem state)

515

=}

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this
. . action.
pwori T emid Pointer to a structure containing a unique workitem ID.
pwor ki tem st ate Pointer to a structure that contains the name of the state to change the
workitem to.
ERROR RETURN VALUE
WM_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WW_I NVALI D_PROCESS_DEFI NI TI ON
WM | NVALI D_STATE
W TRANSI TI ON_NOT_ALLOAED
REQUIREMENTS
Each workitem must have a unique ID within an administrative scope.

RATIONALE FOR API

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Work Item State
Event Code: WM ChangedWorkltemState
Version 2.0 Page 72 of 72

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.10 WMReassignWorkltem

NAME

WM ReassignWorkltem

DESCRIPTION

This command allows awork item from one workflow participant’ s worklist to be reassigned to another
workflow participant’ s worklist.

(Note: Possible future releases of the API specification may provide for an entire worklist to be reassigned
in total.)

WMTEr r Ret Type VWReassi gnWor kit em (
i WMIPSessi onHandl e psessi on_handl e,

=}

in WMTPWI Partici pant psource_user,

in WMTPW I Partici pant ptarget_user,

in WMIPProclnstlD pproc_inst_id,

in WJUTPWrkltem D pwork_item.id)
Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
psource_user Theidentification of aworkflow participant from which work isto be reassigned.
ptar geT ~user The identification of the workflow participant to whom work is to be assigned.
pproc_l nst -! d Pointer to a structure containing the unique process instance ID.
pwork_i tem.id Pointer to a structure containing the work item identification being reassigned.
ERROR RETURN VALUE

WW_SUCCESS

WV | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE
WW_| NVALI D_WORKI TEM

WV | NVALI D_SOURCE_USER

WM | NVALI D_TARGET_USER

REQUIREMENTS
The workflow participant making the reassignment request has the authority to do so.
RATIONALE FOR API

A workflow participant having work assigned may be away from work for various reasons and the work
must be given to another workflow participant to get it accomplished. A WFM Engine may direct all work
items to asingle worklist (departmental worklist for example).

With the reassignment API, workflow participantsin that department may reassign work to themselves after
they finish a current work item and become available for more work. This creates a possible de facto
people load balancing scheme.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign / Reassign Work Item
Event Code: WM ReassignedWorkltem
Version 2.0 Page 73 of 73

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.11 WMOpenWorkltemAttributesList

NAME

WM OpenWorkltemAttributesList - Specifies and opens the query to produce the list of work item
attributes that match the filter criterion.

DESCRIPTION

This command will return aquery handle for alist of attributes for awork item. The command will also
return, optionally, the total count of attributes available. If the count is requested and the implementation
does not support it, the command will return apcount value of -1.

One of the uses of this AP, together with the corresponding fetch and close calls isto allow aworkflow
application to query the Workflow Engine for the available attributes that can be assigned to the work item,
in order to offer thislist to the application user. Attribute values can be obtained as well provided that a
buffer of enough size is passed in the fetch call. Individua attribute values can also be retrieved with the
WM GetWorkltemAttributeValuecall. If pwork_itemattr_filter iSNULL, thenthe function, with
the corresponding fetch calls will return the list of ALL attributes available for the work item.

WMTEr r Ret Type VWOpenWJr kltemAttri butesList (
WMTPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst 1 D pproc_inst_id,
WUTPWor kit em D pwork_item.id,
WMIPFi | ter pwork_itemattr_filter,
WMTBool ean count _fl ag,

out WMTPQuer yHandl e pquery_handl e,

out WMTPI nt 32 pcount)

5151515

=}

Argument Name Description
psessi Qn_hahd' e Pointer to a structure containing information about the context for this action.
pproc_i nst -! d Pointer to a structure containing the unique process instance ID.
pwor k_f temid . Pointer to a structure containing the unique work item ID.
pwork_itemattr_filter Filter associated with the work item attributes.
count _flag Boolean flag that indicatesif the total count of work item attributes should be
returned.
pquery_handl e Pointer to a structure containing a unique query information.
Pcount Total number of attributes for this work item.
ERROR RETURN VALUE
WM _SUCCESS

WV | NVALI D_SESS| ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE
WW_| NVALI D_WORKI TEM

Version 2.0 Page 74 of 74
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.12 WM FetchWorkltemAttribute

NAME

WM FetchWorkltemAttribute - Returns the next work item attribute from the list of work item attributes
that match the filter criterion.

DESCRIPTION

This command returns awork item attribute. This fetch function will return subsequent work item attributes
after every call. The fetch process is complete when the function returns the error Wi NO MORE_DATA. The
fetch function will return the attribute value as well in a buffer specified inthe call. If buffer_si ze is

NULL then the attribute value will not be returned. If buf f er _si ze is not large enough to hold the attribute
value then the function will return as much of the attribute value as can be fit in the buffer. The proper
length of the attribute valueis availableintheat tri bute_I engt h field. The application can compare the
attribute_| ength withthebuffer_si ze to determine if the full value was returned.

WMTEr r Ret Type VWWFet chWorkltemAttri bute (
in WMJTIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMTPAttrName pattri bute_nane,
out WMTPI nt 32 pattribute_type,
out WMIPI nt 32 pattribute_|l ength,
out WMTPText pattribute_val ue,
in WM nt32 buffer_size)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the
. WM OpenWorkltemAttributesList query command.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_val ue Pointer to a buffer area provided by the client application where the attribute
. value will be placed.
buffer_size Size of the buffer.
ERROR RETURN VALUE
WhM_SUCCESS

WV | NVALI D_SESSI ON_HANDLE
W | NVALI D_QUERY_HANDLE
WW_NO_NMORE_DATA

Version 2.0 Page 75 of 75
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.13 WMCloseWorkltemAttributesList

NAME
WM CloseWorkltemAttributesList - Closes the query for work item attributes.

DESCRIPTION

WMTEr r Ret Type VWMCl oseVWorklt emAt t ri but esLi st (
in WJTPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e I dentification of the specific query handle returned by the

WM OpenWorkltemAttributesList query command.

ERROR RETURN VALUE

WW_SUCCESS
W | NVALI D_SESSI ON_HANDLE
WV | NVALI D_QUERY_HANDLE

Version 2.0 Page 76 of 76
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.14 WM GetWorkltemAttributeValue

NAME

WM GetWorkltemAttributeValue - Returns the value, type and length of awork item attribute specified
by the pwor k_i t em i d parameter.

DESCRIPTION

This command will return the value of awork item attribute in the buffer specified in the call.

WMTEr r Ret Type WMGet WOr kit emAt t ri but eVal ue (

Argument Name

psessi on_handl e
pproc_inst_id
pwork_item.id
pattri bute_nane
pattribute_type
pattribute_l ength
pattri bute_val ue

buffer_size

=]

WMTIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst 1 D pproc_inst _id,
WMTPWor kl tem D pwork_item.id,
WMTPAt t r Nanme pattri bute_nane,
WMTPI nt 32 pattribute_type,

out WMTPInt 32 pattribute_|l ength,

out WMIPText pattribute_val ue,

in WM nt32 buffer_size)

=]

=11

o
c
—

Description

Pointer to a structure containing information about the context for this action.
Pointer to a structure containing the unique process instance ID.

Pointer to a structure containing the unique work item ID.

Pointer to the name of the attribute.

Pointer to the type of the attribute.

Pointer to the length of the attribute value.

Pointer to a buffer area provided by the client application where the

attribute value will be placed.

Size of the buffer to befilled.

ERROR RETURN VALUE

WM_SUCCESS

WV | NVALI D_SESSI ON_HANDLE
WV | N\VALI D_ATTRI BUTE
WM | NSUFFI Cl ENT_BUFFER SI ZE

Version 2.0

Page 77 of 77

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.6.15 WMAssignWorkltemAttribute

NAME
WM AssignWorkltemAttribute - Assign the proper attribute to awork item.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, to change an attribute or to change the value of
an attribute of awork item.

WMTEr r Ret Type WWAsSi gnWorkltemAttri bute (
i WMIPSessi onHandl e psessi on_handl e,

>

in WMIPProclnst!D pproc_inst_id,

in WMTPWrkltem D pwork_item.id,

in WMTPAttrName pattribute_nane,

in WM nt32 attribute_type,

in WMTInt32 attribute_| ength,

in WMTPText pattribute_val ue)
Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
ppr oc_i nst - d Pointer to a structure containing the unique process instance ID.
pwork_itemid Pointer to a structure containing the work item ID for which an attribute will be

_ added or changed.

pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.

attribute_length | ength of the attribute value.
pattribute_val ue Pointer to a buffer area provided by the client application where the attribute
value will be placed.

ERROR RETURN VALUE

WW_SUCCESS

W | NVALI D_SESSI ON_HANDLE

WV | NVALI D_PROCESS_| NSTANCE
WW_| NVALI D_WORKI TEM

WV | N\VALI D_ATTRI BUTE

WW_ATTRI BUTE_ASSI GNVENT_FAI LED

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign Work Item Attributes
Event Code: WMAssignedWorkltemAttributes
Version 2.0 Page 78 of 78

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.7 WAPI Administration Functions

The set of administration functions provide the functionality needed to perform administration and
maintenance functions of aworkflow system. This set includes the minimal services contemplated
for this client application interface. The set includes functions to change state of a set of process
or activity instances, terminating and aborting process instances, and for assigning attributes to a
set of process and activity instances.

6.7.1 WM ChangePr ocessl nstancesState

NAME

WM ChangePr ocessl nstancesState - Change the state of the instances of the named process definition that
match the specified filter criterion.

DESCRIPTION

This command is defined to allow a set of process instancesin the named process definition to moveto a
specific new state.

Execution of this command will cause a set of process instances of the named process definition change
their state. If the filter pointer pproc_i nst _filter iSNULL, then the command is applied to al process
instances. Specific state names and their semantics are dependent upon the particular WFM Engine
implementation.

This call will be executed when a set of process instances of a process must have a new state, such as
suspended, disabled or enabled. Specific state names and semantics must be included in implementation
documentation.

Since this command operates on a set of process instances of a named process definition, it is expected to
be issued by a person having the authority to do so. The scope of this operation may be different
depending on the vendor's implementation.

WMTEr r Ret Type WWMChangePr ocessl nst ancesStat e (
i WMIPSessi onHandl e psessi on_handl e,

>

in WMIPProcDef | D pproc_def _id,

in WMIPFilter pproc_inst_filter,

in WMIPProclnstState pproc_inst_state)
Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
Ppr Oc_fief | d‘ Pointer to a structure containing a unique process definition ID.
Pproc_inst_fi I'ter Pointer to a structure containing the filter information for this request.
Pproc_inst_state An 1D that indicates the process state that you want to change to.

ERROR RETURN VALUE

W _SUCCESS
VW | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_DEFI NI TI ON
VW | NVALI D_FI LTER

W_| NVALI D_STATE

WM TRANSI TT ON_NOT_ALLONED

REQUIREMENTS

Each process instance must have a unique 1D within an administrative scope.
Each process definition must have a unique ID within an administrative scope.

Version 2.0 Page 79 of 79
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

RATIONALE FOR API

This API allows the possible intervention of a process administrator in a running process. This might be for
the purpose of changing the process definition and having all subsequently created instances reflect the new
definition. It provides the capability of halting running process instances while changesin roles, activities,
etc. are put into effect. It allows instances to be stopped while problem determination can be done on a
malfunctioning process.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process / Subprocess Instance State
Event Code: WM ChangedProcess| nstanceState
Version 2.0 Page 80 of 80

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.7.2 WM ChangeActivityl nstancesState

NAME

WM ChangeActivityl nstancesState - Change the state of the activity instances of a particular name
associated to a process definition that match the specified filter criterion.

DESCRIPTION

This command directs a WFM Engine to change the state of the named activity for aset of activity
instances. It isassumed that a person who can change the state of the set of activity instances corresponding
to a process definition has special authorization to do so. If the implementation supports a state such as
suspended, and resumed or in-progress, then the functions for suspend and resume are implemented as state
change calls. If the filter pointer pact _i nst _filter iSNULL, then the command is applied to al activity
instances of the given activity definition.

WMTEr r Ret Type VWChangeActi vityl nstancesState (
i WMTIPSessi onHandl e psessi on_handl e,

>

in WMIPProcDef | D pproc_def _id,

in WMIPActivitylD pactivity_def_id,

in WWTPFilter pact_inst_filter,

in WMIPActivitylnstState pactivity_inst_state)
Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
Pproc_def_id Pointer to a structure containing a unique process definition 1D.
Pactivity_def_id Pointer to the activity definition ID.
pact_inst_filter Pointer to a structure containing the filter information for this request.

Pactivity_inst_state An|D that indicates the activity instance state that you want to change to.

ERROR RETURN VALUE

WW_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_DEFI NI TI ON
WW_I NVALI D_ACTI VI TY_NAME

WV | N\VALI D_FI LTER

WV | NVALI D_STATE

WW_TRANSI TI ON_NOT_ALLOWED

REQUIREMENTS

Each process definition must have a unique ID within an administrative scope.
Each activity must have a unique ID within a process definition.

RATIONALE FOR API

A workflow participant may wish to modify the states of activity instances of a particular activity. Other
situations might involve the malfunctioning of an application associated with an activity. A process
containing the activity may be a frequently used one, and it might be issuing dumps each timeit is invoked.
The use of this APl would allow the calling of the application to be stopped while remedial measures were
taken.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Activity Instance State
Event Code: WM ChangedA ctivityl nstanceState
Version 2.0 Page 81 of 81

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.7.3 WM TerminatePr ocessl nstances

NAME

WM TerminateProcessl nstances - Terminate the process instances of the named process definition that
match the specified filter criterion.

DESCRIPTION

This command provides the capability of terminating a set of process instances associated with a process
definition. Execution of this command will cause a set of process instances of the named process definition
to be terminated. If the filter pointer pproc_i nst _filter iSNULL, then the command is applied to all
process instances.

WMTEr r Ret Type VWMTer nmi nat ePr ocessl nst ances (

i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pproc_def _id,

WMIPFi | ter pproc_inst_filter)

3|3‘3

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
Pproc_def _i d Pointer to a structure containing the process definition for which all process
_ _ instances are to be terminated.
Pproc_inst_filter Pointer to a structure containing the filter information for this request.

ERROR RETURN VALUE

WW_SUCCESS
W | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_DEFI NI TI ON
WV | N\VALI D_FI LTER

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process/ Subprocess | nstance State
Event Code: WM TerminatedProcess| nstance
Version 2.0 Page 82 of 82

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.7.4 WM AssignProcessl nstancesAttribute

NAME

WM AssignProcessl nstancesAttribute - Assign the proper attribute to a set of process instances within a
process definition that match the specific filter criterion.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, or to change an attribute or to change the values
of an attribute of a set of process instances within a named process definition.

This command changes the value of the attribute of a processinstance. These attributes of process
instances are of the kind called Process Control or Process Relevant Data.

WMTEr r Ret Type WASSI gnProcessl nstancesAttribute (
i WMTIPSessi onHandl e psessi on_handl e,

>

in WMIPProcDef | D pproc_def _id,
in WMIPFilter pproc_inst_filter,
in WMTPAttrName pattribute_nane,
in WM nt32 attribute_type,
in WMTInt32 attribute_| ength,
in WMTPText pattribute_val ue)
Argument Name Description
Psessi on_handl e Pointer to a structure containing information about the context for this action.
pproc_def _id Pointer to a structure containing the process definition 1D for which the attribute
_ _ of al process instances will be changed.
pproc_i nst _filter Pointer to a structure containing the filter information for this request.
Ppattribute_name Pointer to the name of the attribute.
Attribute_type Type of the attribute.
Attribute_length Length of the attribute value.
Pattribute_val ue Pointer to a buffer area provided by the client application where the attribute

value will be placed.

ERROR RETURN VALUE

WW_SUCCESS
W | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_DEFI NI TI ON
WV | NVALI D_FI LTER

W | N\VALI D_ATTRI BUTE

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process I nstance Attribute
6.7.5 Event Code: WM AssignedPr ocessl nstanceAttributes
Version 2.0 Page 83 of 83

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

WM AssignActivityl nstancesAttribute

NAME

WM AssignActivityl nstancesAttribute - Assign the proper attribute to set of activity instances within a
process definition that match the specific filter criterion.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, or to change an attribute or to change the value
of an attribute of a set of activity instances within a named process definition. These attributes of activity
instances are of the kind called Process Control or Process Relevant Data. If pact _inst_filter iSNULL,
then the function is applied to ALL accessible activity instances of the given activity definition.

WMTEr r Ret Type WWASSI gnActi vityl nstancesAttribute (
i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pproc_def _id,

WMTIPActi vityl D pactivity_def _id,
WMTPFi | ter pact _inst_filter,

WMTPAt t r Nane pattri but e_nane,

WMl nt 32 attribute_type,

WMTI nt 32 attribute_Il ength,

WMTPText pattribute_val ue)

>

5151515151515

Argument Name Description

psessi on_handl e Pointer to a structure containing information about the context for this action.

pproc_def _id Pointer to a structure containing the process definition ID. In the case that the
attribute will be changed for all activity instances that correspond to the process
definition. This parameter will be NULL otherwise.

pactivity_def_id Pointer to a structure containing the activity definition identification for which
the attribute will be assigned.

pact_inst_filter Pointer to a structure containing the filter information for this request.

pattribute_nane Pointer to the name of the attribute.

attribute_type Type of the attribute.

attribute_|l ength Length of the attribute value.

pattribute_val ue Pointer to a buffer area provided by the client application where the attribute

value will be placed.

ERROR RETURN VALUE

WW_SUCCESS
WV | NVALI D_SESSI ON_HANDLE
WV | NVALI D_PROCESS_DEFI NI TI ON
WW_I NVALI D_ACTI VI TY_NAME

WV | NVALI D_FI LTER

WV | N\VALI D_ATTRI BUTE

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign Activity Instance Attributes
Event Code: WM A ssignedActivitylnstanceAttributes
Version 2.0 Page 84 of 84

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.7.6 WM AbortProcessl nstances

NAME

WM AbortProcessl nstances - Abort the set of process instances that correspond to the named process
definition, that match the specific filter criterion, regardless of its state.

DESCRIPTION

This command allows a set of processinstances of a process definition to be aborted. All current activities
within these process instances will be stopped when possible. The instances will be terminated. If
pproc_inst _filter iSNULL, then the function will be applied to ALL accessible process instances.

WMTEr r Ret Type VWAboOrt Processl nst ances (
i WMTIPSessi onHandl e psessi on_handl e,

>

in WMIPProcDef | D pproc_def _id,
in WMIPFilter pproc_inst_filter)
Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pproc_def _i d Pointer to a structure containing the process definition for who all processes
_ _ instances is being aborted.
pproc_inst_filter Pointer to a structure containing the filter information for this request.
ERROR RETURN VALUE

WW_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_DEFI NI TI ON
WV | NVALI D_FI LTER

REQUIREMENTS
None
RATIONALE FOR API

This command is for use in catastrophic circumstances where nothing except clearing the process
away can be done.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Instance State
Event Code: WM AbortedProcessl nstance
Version 2.0 Page 85 of 85

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.7.7 WM AbortProcessl nstance

NAME

WM AbortProcessl nstance - Abort the process instance specified regardless of its state.
DESCRIPTION

This command allows a process instance to be aborted. All current activities within the process
instance will be stopped when possible. The instance will be terminated.

WMTEr r Ret Type VWAboOrt Processl nst ance (
in WJTIPSessi onHandl e psessi on_handl e,
in WMIPProclnst!D pproc_inst_id)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the process instance being aborted.
ERROR RETURN VALUE
W SUCCESS

WV | NVALI D_SESS| ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE

REQUIREMENTS
None

RATIONALE FOR API

This command is for use in catastrophic circumstances where nothing except clearing the process away can
be done.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process/ Subprocess | nstance State
Event Code: WM AbortedProcessl nstance

6.8 WAPI Application Invocation Functions

The set of application interface functions provides services to Tool-Agents, to invoke and control
applications associated with specific work items.

The Invoked Application Interface defines an API set, which is highly recommended to be used by
Workflow System components (engine and client applications) to control specialized application drivers
called Tool Agents. These Tool Agents finaly start up and stop applications, pass workflow and application
relevant information to and from the application and control the application’s run level status.

Therefore, the Invoked Application Interface WAPIs are only directed against a Tool Agent. Nevertheless,
additional workflow information could be requested by an application via the Tool Agent using standard
WAPI functions. Asthe Invoked Application I nterface should handle bi-directional requests (requests to
and from applications), it depends on the interfaces and architecture of applications how to interact with an
Tool Agent.

Version 2.0 Page 86 of 86
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Thisinterface will alow the request and update of application data and more run-time relevant
functionalities.

Wor kflow enabled

applications Workflow System

(Workflow Engine and/or
Worklist Handler

Interface 3 - API

Invoked applications Invoked applications

Tool Agents

ifferent invokation technologi
Fig. 1: The localization of the Invoking Application Interface.

The Workflow System itself hasto know about the installed Tool Agents. The basic architecture of Tool
Agents could be compared with adriver - interface, i.e. ODBC, €tc..

Within this interface definition, no further communication mechanism between the Tool Agents and the
Workflow System is necessary.

6.8.1 WMTAConnect() & WM TADisconnect()

DESCRIPTION

These commands create and terminate connections to Tool Agent interfaces. The commands are already
defined in section “WAPI Connection Functions’. Applications might require login procedures, therefore
user authentication should be passed to a Tool Agent to provide single-login mechanisms.

Note: The value for engine_name in WM TConnectlnfo represents the name of the Tool Agent
implementation as defined in the process definition.

Version 2.0 Page 87 of 87
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.8.2 WMTAInvokeApplication()

NAME
WMTAInvokeApplication - Force a Tool Agent to start or activate a specific application.
DESCRIPTION

The workflow application or engine activates a specified application associated with awork item by calling
this Tool Agent API. Applications could be already active (started) or have to be invoked (started) by the
Tool Agent. Invoking an application always includes passing of additional options like application
parameters and modes.

i nt WMTAlI nvokeApplication (

in int tool _agent_handle,
in string application_nane,
WMTPPr ocl nst 1 D pproc_inst _id,

=}

>

in WWTPWrkltem D pwork_itemid,

in WATPAttri butelist pattribute_|ist,

in int app_node)
Argument Name Description
tool_agent_handle This handle represents one connection to a specific Tool Agent
application_name This parameter represents the name of the executable file or component. The

application name must be passed without the path name. (The Tool Agent
implemetation and configuration has to handle the local configuration.)

pproc_inst_id Process instance, to identify the relation between the application and a process
instance. This ID allows the System to reference to a specific application handle of the
Tool Agent.

pwork_item id Work Item associated with invoked application

pattribute_list Pointer to alist of parameters and attributes which are required by the application.

These parameters could be either application relevant, or dynamic, or workflow
relevant data. (e.g. filename, record identifer, etc.)

app_mode Represents a possible application mode like “CREATE”, “UPDATE", “READ-
ONLY”,"PRINT”, etc..

ERROR RETURN VALUE

WW_SUCCESS

WW_APPLI CATI ON_NOT_STARTED
WW_APPLI CATI ON_NOT_DEFI NED
WW_APPLI CATI ON_BUSY

REQUIREMENTS
None

RATIONALE FOR API

This command invokes a specific application associated with awork item.A Tool Agent might control one
or multiple applications, which have to be started or activated. Also, an application have to be started in a
specific mode like “open” or “update”.

AUDIT INFORMATION

None

Version 2.0 Page 88 of 88
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.8.3 WMTARequestAppStatus()

NAME

WMTARequestAppStatus - allows the Workflow System to check for open applications and their status
(running, pending, etc.).

DESCRIPTION

WMTARequestAppStatus() defines how the Workflow System has to check the status of an application and
retrieves workflow relevant data from the application. To retrieve workflow relevant data from an invoked
application, the workflow application or engine has to request the application status and information from a
Tool Agent. Due to some asynchronous requirements of integrated applications, Tool Agents can request
additional information by use of other WAPI interfaces.

int WMTARequest AppSt at us (
in WM nt32 tool _agent_handl e,
in WMTPProcl nst1 D proc_inst_id,
n WJUTPWrkltem D pwork_item.d,
ut WMl nt 32 app_stat us,
ut WMTPAttri buteLi st WFRel evant Dat a)

o

o

Argument Name Description

tool_agent_handle This handle represents one specific Tool Agent

Pproc_inst_id Workflow relevant data belong to this process instance and should be updated after the
application is finished.

Pwork_item _id Work Item associated with invoked application.

app_status Information about the invoked application. (I.e. “RUNNING”, “ACTIVE",
“WAITING”, “TERMINATED”, “FINISHED”, etc.)

WFReevantData A list or structure of workflow relevant data, which could be accessed by the Tool

Agent mechanisms.

ERROR RETURN VALUE

WW_SUCCESS

WW_APPLI CATI ON_BUSY

WV | NVALI D_TOOL_AGENT_HANDLE
WW_| NVALI D_WORKI TEM

WM | NVALI D_PROCESS_| NSTANCE

REQUIREMENTS
None

RATIONALE FOR API

To check the status of an active work item this command might be used to control the status of an invoked
application.

AUDIT INFORMATION

None

Version 2.0 Page 89 of 89
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

6.84 WMTATerminateApp()

NAME
WMTATerminateApp - Forces the Tool Agent to terminate an application.
DESCRIPTION

This APl allows the Workflow System to stop an application, which relates to a specific process instance.
Also, an application can be terminated by any other event. Therefore, WM TerminateApp is not mandatory
within the application control APIs, but it allows the Tool Agent to free application relevant information.

int WMTATer mi nat eApp (
in WM nt32 tool _agent_handl e,
in WMIPProcl nst1 D pproc_inst_id,
WMTPWor ki t eml D pwor k_i tem i d)

=}

>

Argument Name Description
tool_agent_handle This handle represents one specific Tool Agent
pproc_inst_id Workflow relevant data belong to this process instance and should be updated after the

application is finished.
pwork_item_id Work Item associated with invoked application.

ERROR RETURN VALUE

WW_SUCCESS

WW_APPLI CATI ON_NOT STOPPED
WW_| NVALI D_PROCESS | NSTANCE
WW_| NVALI D_WORKI TEM
WW_APPLI CATI ON_BUSY

REQUIREMENTS
None

RATIONALE FOR API

This command is to close a connection to an application and to stop it. It might be used before system
shutdown, or to terminate invoked applications to allow better control of system resources used by
integrated applications.

AUDIT INFORMATION

None

Version 2.0 Page 90 of 90
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Version 2.0 Page 91 of 91
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

7. Appendix A: Future Work

7.1 Additional API Areas

The WFM Coalition API specification work will address the following areas. It will be determined whether
API calls should be created for these areas or whether they are the sole domain of particular WFM product
implementations.

7.1.1 WFM Data API calls

The types of data that applications need to manipulate through this API specification are process control
data, process relevant data, and application data. The current specification addresses the access to these data
through the definition and manipulation of attributes of processes, activities and work items. It is currently
believed that some additional new API calls or parameter additions to existing API calls will be required
for complete data manipulation.

7.1.2 Ad hoc activities

In afuture release of API specifications, the APl working group will consider the functionality to allow
applications to add activities to an instance of a process that are not part of its definition. These ad-hoc
additions will be done on an instance basis.

7.1.3 Administration and Maintenance

The API working group believes that the functions in this area correspond to interface 5. Services should
include functions for:

Purging

Backup

Archiving

Download and Upload instances (for remote users)

7.1.4 Namesand Roles

The API working group believes that a Workflow Engine should also provide services for definition,
assignment, mapping and maintenance of roles and names (identities). The working group also believes
that these services should be provided through interface 5 as well.

7.2 Additional Issues

The WFM Coalition API specification work will be expanded to take care of the following issues for future
releases.

7.2.1 Error reporting and control

All WAPI function calls have a uniform error return datatype. This datatypeis shared among all API calls.
This specification assumes that the Coalition will specify a subset of the main error return codes, leaving for
vendor specific implementation the remaining main error return codes and the set of subcode codes to
provide extensibility and specialization of error codes. (See section WAPI Data Types, and WAPI Error
Return Codes sections).

7.2.2 Synchpoint processing
Synchpoint processing deals with recoverability. The APl working group believes that this areais
extremely important to WFM exploiters. However, it isalso believed that it would be one of the more

Version 2.0 Page 92 of 92
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

difficult areas to deal with in terms of member agreement. Work in this areais being deferred to the second
release of the API specifications.

7.2.3 Security

The current version of the WFM API specification does not include any specific requirements or provisions
for security mechanisms, except for the inclusion of user password in the WM T Connectl nfo structure.
Implementation of security mechanisms are left up to the specific implementations.

7.2.4 Locking

The current version of the WFM API specification does not include any specific requirements or provisions
for locking mechanisms. Implementation of |ocking mechanisms are left up to the specific
implementations.

7.2.5 ProcessIntegrity

The current version of the WFM API specification does not include any specific requirements or provisions
for mechanisms to guarantee process integrity. Implementation of process integrity mechanisms are left up
to the specific implementations.

Version 2.0 Page 93 of 93
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

8. Appendix B: Object Bindings

This chapter describes the object bindings for the WAPI functions described in this document®. Bindings
are defined for OLE and in terms of OMG IDL. Both bindings realize a common objet model that is
described in the next section; the rest of the chapter describes the binding specifications.

8.1 Abstract Object Definition

The following diagram shows the primary objects used in the definition of the Workflow Application
Client interface.

manages Workflow manages
Server
manages manages
realizes L comprises executes
Activi Process
Work Item ty - N

Instance Instance Definition

The WorkflowServer provides the context for communication with the Workflow Enactment Service. It
allowsfor filtered queries on objects owned by the specific Enactment Service. An executable workflow
model itself is represented by the ProcessDefinition ; the Process Definition serves as a Factory for
creating instances of the Workflow Model that are enacted by the Workflow Management System. To
execute a specific process, a Processl nstance of the ProcessDefinition is created. During execution of the
Processlnstance, the Enactment Service creates instances (Activitylnstance) of the Activity Definitions
contained in the Process Definition. Assignment of an activity instance to a participant creates a Workltem.

The next diagram shows the auxiliary constructs that are used to complete the Object Model.

1 The new Process Definition functions are not covered here at the moment.

Version 2.0 Page 94 of 94
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3)

01-July-98

Workflow
Server

Filter

owns

contains

Workflow

qualifies

contains

Work Item

containsl

Object
Collection

l contains

Process
Instance

Activity
Instance

has | has

P Attribute | «¢

Process
Definition

has has

A set of standardized Attributesis defined for each of the objects - attributes specific to a particular
Enactment Service or user-defined attributes that determine the specifics of a Workflow object in a
particular Workflow Model. Accessto filtered lists of objects owned by the Enactment Service is managed
via Collection-type interfaces; Filter objects support definition of selection criteriafor those lists.
Workflow Object Collections are realized as OLE-Collections in the OLE binding; in the OMG IDL
binding an Iterator-type interface is defined for each of the fundamental Workflow Object interfaces.

8.1.1 Mapping WAPI totheOLE and IDL Bindings

The following table describes how the ingredients of the Common Object Model described above map to
the WAPI constructs defined in this specification.

WAPI Element OLE Object IDL Interface
WMTSession Server ApplicationClientServer
WMTFilter Filter Filter
WMTQueryHandle OLE-Collection ProcessDefinitionsList

ProcesslnstancesList
ActivitylnstancesList
WorkList
AttributeList

WMTProcessDefinition

ProcessDefinition

ProcessDefinition

WMTProcess| nstance

Processlnstance

Processlnstance

WMTActivitylnstance

Activitylnstance

Activitylnstance

WMTWorkltem

Workltem

Workltem

WMTAttributeName
WMTALttributeType
WMTAttributelength
WMTAttributeValue

Attribute

Attribute

WMTEntity of type Process
Activity

Version 2.0

ActivityDefinition

Copyright © 1993, 1999, The Workflow Management Coalition

Page 95 of 95

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

WMTEntity of type Transition TransitionDefinition
Information

WMTEntity of type Application ApplicationDefinition
Definition

WMTEntity of type Participant ParticipantDefinition
Definition

WMTEntity of type Process DataDefinition
Relevant Data

8.2 OLE Automation Binding

This appendix describes the OLE automation binding for the Workflow Management Coalition Interface 2
(WAPI2). Itisbased on:

the WAPI specified in this document, and
Microsoft Visual Basic 4.0, Professional Features, Creating OLE Servers, Chapter 3, Sandards and
Guidelines

This binding has two goals:

1. Toaccurately reflect the functionality specified by WAPI2.
2. To conform to the standards and guidelines for OLE automation interfaces.

Note that this version of the binding does not yet include the “entitiy” functions.

8.2.1 Expressing WAPI2 asan OLE Automation Interface

WAPI2 is defined in terms of data structures and functions. An OLE automation interface consists of object
classes, each with properties and methods. The OLE automation binding for WAPI2 was derived using the
following rules:

1. Define an OLE automation object class for each WAPI2 data structure. However, if aWAPI2 data
structure consists of asingle WMTText field, use the OLE automation String class.

2. Define aread-only OLE automation property for each field in each WAPI2 data structure, on the object
class corresponding to the data structure.

3. For each WAPI2 function, define a method on the appropriate object class. Omit the session handle
parameter from the methods (except for the Server methods).

4. Use OLE automation collections for each Open/Fetch/Close...List combination of functions, and for
fieldsin data structures that hold multiple values (e.g. participants).

5. Errors are reported via exceptions.

8.2.1.1 Object Classes

The OLE automation binding defines an OLE automation object (class) for each WAPI2 data structure. For
example, WAPI2 defines a process instance data structure as follows:

Version 2.0 Page 96 of 96
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

typedef struct

/1 This is the mninumlist of elements at this tine. Future versions to provide
extensibility for this structure.

WM Text process_nane[NAVE_STRI NG_SI ZE] ;
WMTPr ocl nst 1 D proc_i nst _i d;

WMTPr ocDef | D proc_def _i d;

WMTPr ocl nst St at e stat e;

WMTI nt 32 priority;

WMI Text dat a_r ef erence[DATA_REFERENCE_SI ZE] ;

/1 private el enent containing vendor specific
information
WMIW | Par ti ci pant proc_partici pant s[20];
//up to 20 63 character long participant identifiers
} WMIProcl nst;

The OLE automation binding defines a Process| nstance object class with properites Name, ID,
ProcessDefinitionlD, State, Priority, DataReference, and Participants. This Processlnstance object class
defines Start and Terminate methods, corresponding to the WM StartProcess and

WM TerminateProcess| nstance WAPI 2 functions.

The table below lists the object classes in the WAPI2 OLE automation binding, and the corresponding
WAPI2 data structures. Note that there are exceptions to the rules stated above. Thereisno
Connectionlinfo object class - the information is passed as separate parameters to the Connect method of the
Server class. Thereisan Attribute object class - its properties are passed as separate parametersin the
WAPI2 attribute functions.

OLE Automation Object | WAPI 2 Data Type
Server WMTSessionHandle
WMTConnectinfo
Filter WMTFilter
Collection WMTQueryHandle
ProcessDefinition WMTProcDefID
Processlnstance WMTProclnst
Activitylnstance WMTACtivitylnst
Workltem WMTWorkltem
Attribute
String WM TW I Participant
WMTProcDefState
WMTProclnstState

The table below lists the entities in the Workflow Process Definition Language (WPDL), and the
corresponding WAPI2 OL E automation binding objects.

OLE Automation Object WPDL Entity

ProcessDefinition Workflow Process Definition
ActivityDefinition Workflow Process Activity
TransitionDefinition Transition Information
ParticipantDefinition Workflow Participant Definition
ApplicationDefinition Workflow Application Definition
DataDefinition Workflow Process Relevant Data

8.2.1.2 Object Hierarchy

The object classes in an OLE automation interface are organized into an object hierarchy. Thisisnot an
inheritance hierarchy based on “is @’ relationships. Rather, it isanavigational hierarchy that “ organizes the
objectsin away that makes programming easier”. The top level objectsin the hierarchy are “externally

Version 2.0 Page 97 of 97
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

creatable”, which means that a program can obtain such objects directly. All other objectsin the OLE
automation interface are obtained indirectly, through the properties and methods of the top level objects.
Hereis the object hierarchy for the WAPI2 OLE automation interface:

Server

Process Definitions
States
ActivityDefinitions
TransitionDefinitions
ParticipantDefinitions
ApplicationDefinitions
ProcessDataDefinitions

Process Instances
Attributes
Participants
States

Activity Instances
Attributes
Participants
States

Work Items
Attributes
Participant

ParticipantDefinitions

ApplicationDefinitions

Filter

WAPI2 requires a program to first obtain a session handle, and then use it to get process, activity, and work
item handles. Inthe OLE automation binding, Serverand Filter are the top level objects. The Server object
class has methods for listing process definitions, process instances, activity instances, and work items.

8.2.1.3 Collections and Queries
WAPI2 supports several retrieval operations that return multiple values:

alist of process definitions, process instances, activity instance, or work items,
the states of a process definition, process instance, or activity instance
the attributes of a process instance, activity instance, or work item

For each such retrieval operation, WAPI2 defines three functions:

WMOpen...List
WMFetch...
WMClose...List

The open functions take afilter parameter. The fetch functions are used to iterate through the values
retrieved.

OLE automation uses the Collection object class to navigate such one-to-many relationshipsin the object
hierarchy. The Server object class has list methods which take a Filter object as a parameter and return a
collection of ProcessDefinition, Processinstance, Activitylnstance, or Workltem objects. The
ProcessDefinition, Processlnstance, and Activitylnstance object classes have a States property whose value
is acollection of states. . The Processinstance, Activitylnstance, and Workltem object classes have an
Attributes property whose valueis acollection of attributes. These properties have a Filter parameter.

Version 2.0 Page 98 of 98
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

The Collection object class has a Count property (the number of elementsin the collection) and provides
methods for iterating through its elements. For example, here isthe VBA code to populate a list box with a
user’ swork items:

Di m nySessi on As Session
Di m nyWorkList As Filter
Di m nyWorkltem As Workltem

Set nySession = CreateQbject(“WAPI 2. Sessi on”)
nySessi on. Connect (.. .)

For Each nyWsrkltem I n Session. Li st Wrkltens(nyWrkLi st)
Li st Box. Addl t em nmyWor kl t em Nane
Next nyWorkltem

The ProcessDefinition, Processlnstance, Activitylnstance, and Workltem classes each have collection-
valued properties for their states, attributes, and participants. The elements of the state and participant
collections are strings. The elements of the attribute collections are Attribute objects, which have two
properties: Name and Value. The Value property is expressed as an OLE automation Variant, which
provides methods for determining its data type and length.

8.2.1.4 Exceptions

OLE automation supports exceptions. OLE automation servers can report errors by raising an exception
rather than returning an error code. This allows chaining callsto an OLE automation interface in asingle
expression. For example, the following expression

Wor kl t em Processl nst ance. ProcessDefi ni ti on. Nane

makes three calls to the OLE automation interface to return the name of the process definition for the
process instance that contains the work item. These expressions commonly appear in programs or macros
that call an OLE automation interface. Any one of the calls could encounter an error, which would be
reported to the calling program through an exception.

The OLE automation binding for WAPI2 uses exceptions to report errors. The exception object carries a
text description of the error with it. The Server object also has ErrorCode and ErrorSubCode properties.
When a program calls the WAPI2 OLE automation interface, and the server encounters an error, it setsthe
Server properties to the error codes in the WM TErrRetType data structure, and raises an exception.

8.2.2 Attributes

Most workflow objects can have a collection of attributes, where each attribute has a name, data type, and
value. The WAPI C binding provides functions for

iterating through the attributes of an object: WMOpen...AttributesList, WM Fetch...Attribute,
WMClose...AttributesList, and

getting and setting attribute values: WM Get. .. AttributeValue, WMASsign... AttributeValue.

In the OLE binding, each object has an Attributes property whose value is a collection of Attribute objects.
The OLE collection object provides methods for iterating through the attributes of an object. An Attribute
object has name, type and value properties corresponding to the at t ri but e_nane, attribute_type,
attribute_l ength, andattribute_val ue parameterstothe WMGet...AttributeValue function. The
Attributes collection isindexed by attribute name. Getting the value of an attribute object has the same
effect as calling WMGet... AttributeValue; setting the value of an attribute object has the same effect as
caling WMAssign...AtributeVaue. For example, the following expression

activity.Attributes(“Size"). Value

Version 2.0 Page 99 of 99
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

evaluates to the value of the “Size” attribute of an activity object (referenced by the activity variable), and

activity.Attributes(“Size”).Value = 15

updatesthe “Size" attribute of an activity object. The datatype of the Value property isthe OLE
automation Variant type. This datatype provides functions for determining the data type of its value, and
converting its value to a basic data type.

8.2.3 Server

The Server object class corresponds to the WMTSessionHandle data type. Server objects are externally
creatable. A program must successfully call the Connect method on a Server object before it can be used to
access other objects.

8.2.3.1 Properties
A Server object has the following properties:

Name Type Description

Engine String pconnect_info.engine_name
ErrorCode I nteger WMTErrRetType.main_code
ErrorSubCode Integer WMTErRetType.sub_code

Scope String pconnect_info.scope

These properties are read-only. They are set when the OLE automation interface rai ses an exception.

8.2.3.2 Methods
A Server object has the following methods:

Signature Description

Connect WM Connect
in String User
in String Password

ProcessDefinition CreateProcessDefinition | WM CreateProcessDefinition

DeleteProcessDefinition WM DeleteProcessDefinition
in ProcessDefinition ProcDef

Disconnect WM Disconnect

Collection ListProcessDefinitions WM OpenProcessDefinitionsList
in Filter ProcDefFilter

Collection ListProcessl nstances WM OpenProcess| nstancesList
in Filter ProclnstFilter

Processl nstance GetProcessl nstance WM GetProcessl nstance
in String ProclnstID

Collection ListActivitylnstances WMOpenActivityl nstancesL ist
in Filter ActivitylnstFilter

Activitylnstance GetActivitylnstance WM GetActivitylnstance

in String ProclnstID
in String ActivitylnstID

Collection ListWorkltems WM OpenWorkltemsList
in Filter WorkltemFilter
Workltem GetWorkltem WM GetWorkltem

in String ProclnstID
in String WorkltemID

Version 2.0 Page 100 of 100
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

ApplicationDefinition WM CreateEntity
CreateApplicationDefinition
in String Name

DeleteA pplicationDefinition WMDeleteEntity
ParticipantDefinition WM CreateEntity
CreateParticipantDefinition

in Sting Name
DeleteParticipantDefinition WMDeleteEntity

8.2.3.3 Connect

This method is the binding for the WM Connect function. Note that the engine name and scope
parameters to the WM Connect function are omitted here. Thisinformation is encoded in the
parameters to the call to the OLE function (CreateObject or GetObject) which returns the server
object.

Connect (
in String User,
in String Password)
Argument Description (WM Connect Argument)
User pconnect _i nfo. user_identification
Password pconnect_info.password

8.2.3.4 CreateProcessDefinition
This method is the binding for the WM Cr eatePr ocessDefinition function.

ProcessDefinition CreateProcessDefinition ()

Argument Description (WM CreatePr ocessl nstance Argument)

Processl nst ance pproc_def _id

8.2.3.5 DeleteProcessDefinition
This method is the binding for the WM DeleteDefinition function.

Del et eProcessDefinition (
in ProcessDefinition ProcDef)

Argument Description (WM DeleteProcessDefinition Argument)
Pr ocDef pproc_def _id

8.2.3.6 WMDisconnect
This method is the binding for the WM Disconnect function.

Di sconnect ()

8.2.3.7 ListProcessDefinitions
This method is the binding for the WM OpenPr ocessDefinitionsList function.

Version 2.0 Page 101 of 101
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Col | ection ListProcessDefinitions (
in Filter ProcDefFilter)

Argument Description (WM OpenProcessDefinitionsList Argument)
Pr oc Def Fi lter pproc_def _filter
Col I ection pquery_handle

8.2.3.8 ListProcessl nstances
This method is the binding for the WM OpenPr ocessl nstancesList function.

Col I ection ListProcesslnstances (
in Filter ProclnstFilter)

Argument Description (WM OpenProcessl nstancesList Argument)
Procl nst Filter pproc_inst _filter
Col I ection pquery_handle

8.2.3.9 GetProcess| nstance
This method is the binding for the WM GetPr ocessl nstance function.

Processl nstance Get Processl nst ance (
in String ProclnstlD)

Argument Description (WM GetProcessl nstance Argument)
Proclnst1 D pproc_inst_id
Processl nst ance pproc_inst

8.2.3.10 ListActivityl nstances
This method is the binding for the WM OpenActivityl nstancesL ist function.

Col I ection ListProcesslnstances (
in Filter ActivitylnstFilter)

Argument Description (WM Activityl nstancesL ist Argument)
Activit_ylnstFiIter pactivity_inst_filter
Col I ection pquery_handle

8.2.3.11 GetActivityl nstance
This method is the binding for the WM GetActivityl nstance function.

Activitylnstance GetActivitylnstance (
in String ProclnstlD,

in String ActivitylnstlD)

Argument Description (WM GetActivityl nstance Argument)
Proclnst1 D pproc_inst_id

ActivitylnstID pactivity_inst_id

Activitylnstance pactivity_inst

8.2.3.12 ListWorkltems
This method is the binding for the WM OpenWorkL ist function.

Version 2.0 Page 102 of 102
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Col | ection ListWrkltens (
in Filter WorkListFilter)

Argument Description (WM OpenWorkList Argument)
WJrkLis‘tFiIter pworklist_filter
Col I ection pquery_handle

8.2.3.13 GetWorkltem
This method is the binding for the WM GetWor kltem function.

Workltem Get Worklt em (
in String ProclnstlD,

in String Wrkltem D)

Argument Description (WM GetWorkltem Argument)
Proclnst1 D pproc_inst_id

Workl tem D pwork_ itemid

Verkl tem pwork_item

8.2.3.14 CreateApplicationDefinition

This method is the binding for the WM Cr eateEntity function, when used to create a workflow
application definition outside of any process definition.

ApplicationDefinition CreateParticipantDefinition ()

Argument Description (WM CreateEntity Argument)
Nane entity_nanme

Appl i cati onDefi nit Entity

i on

8.2.3.15 DeleteApplicationDefinition

This method is the binding for the WM DeleteEntity function, when used to delete a workflow application
definition that is not part of a process definition.

Del et eApplicationDefinition (
in ApplicationDefinition AppDef)

Argument Description (WM DeleteEntity Argument)
AppDef entity_ id

8.2.3.16 CreateParticipantDefinition

This method is the binding for the WM CreateEntity function, when used to create a workflow
participant definition outside of any process definition.

ParticipantDefinition CreateParticipantDefinition ()

Argument Description (WM CreateEntity Argument)

Nane entity_nane

Parti ci pant Definit Entity

ion

Version 2.0 Page 103 of 103

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

8.2.3.17 DeleteParticipantDefinition

This method is the binding for the WM DeleteEntity function, when used to delete a workflow participant
definition that is not part of a process definition.

Del etePartici pantDefinition (
in ParticipantDefinition PartDef)

Argument Description (WM DeleteEntity Argument)
Par t Def entity_ id
8.2.4 Filter

Thefilter object class corresponds to the WMTFilter datatype. Filter objects are externally creatable.

8.2.4.1 Properties
Filter objects have the following properties:

Name Type Description

Type I nteger WMTFilter filter_type
Length Integer WMTFilter filter_length
AttributeName String WM TFilter.attribute_name
Comparison Integer WMTFilter.comparison
FilterString String WMTFilter filter_string

8.2.4.2 Methods
There are no methods for Filter objects.
8.2.5 Process Definition

The process definition class corresponds to the WM TProcDefI D datatype. Process definition objects are
not externally creatable. They are returned by the Server object’s ListProcessDefinitions method, and by
the ProcessDefinition property of a Processlnstance object.

8.2.5.1 Properites
A ProcessDefinition object has the following read-only properties:

Name Type Description

Activities Collection WPDL <Activity List>

Applications Collection WPDL <Workflow Application List>

Data Collection WPDL <Workflow Process Relevant Data
List>

ID String WMTProcDefld.proc_def id

Name String WPDL <process hame>

Participants Collection WPDL <Workflow Participant List>

States Collection WM OpenProcessDefinitionStatesList

Transitions Collection WPDL <Transition Information List>

All of these properties, except name, are read-only. The States property takes a Filter parameter.

8.2.5.2 Methods
A ProcessDefinition object has the following methods:

Signature | Decription |

Version 2.0 Page 104 of 104
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3)

Processl nstance Createl nstance

WM CreateProcessl nstance

Changel nstancesState
in Filter Instancekilter
in String InstanceState

WM ChangeProcessl nstancesState

ChangeActivitylnstancesState
in String ActivityDefinitionl D
in Filter Instancekilter
in String InstanceState

WM ChangeA ctivityl nstancesState

Terminatel nstances
in Filter InstanceFilter

WM TerminateProcessl nstances

AssignlnstancesAttribute
in Filter InstanceFilter
in String Name
in Variant Value

WM A ssignProcessl nstancesAttribute

AssignActivitylnstancesAttribute
in String Activitylnstancel D
in Filter Instancekilter
in String Name
in String Value

WMASssignActivityl nstancesAttribute

Abortlnstances
in Filter InstanceFilter

WM AbortProcess| nstances

ActivityDefinition AddActivity WMAddEntity
in String Name

ApplicationDefinition AddApplication WMAddEntity
in String Name

ParticipantDefinition AddParticipant WMAddEntity
in String Name

ProcessDataDefinition AddData WMAddEntity
in String Name

TransitionDefinition AddTransition WMAddEntity

in String Name

01-July-98

Note that the Server parameters to these methods isimplicit. They use the server from which the process

definition was obtained.

8.2.5.3 Createl nstance

This method is the binding for the WM Cr eatePr ocessl nstance function.

Processl nstance Createl nstance ()

Argument

Processl nst ance

8.2.5.4 Changel nstancesState

pproc_inst_id

Description (WM Cr eatePr ocessl nstance Argument)

This method is the binding for the WM ChangePr ocessl nstancesState function.

Changel nst ancesSt at e (

in Filter InstanceFilter,
in String InstanceState)

Argument

I nstanceFil ter
I nstanceSt at e

Version 2.0

Description (WM ChangePr ocessl nstancesState Argument)

pproc_inst _filter
process_inst_state

Copyright © 1993, 1999, The Workflow Management Coalition

Page 105 of 105

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

8.2.5.5 ChangeActivityl nstancesState
This method is the binding for the WM ChangeActivityl nstancesState function.

ChangeActivityl nstancesState (

in String ActivityDeflD,
i Filter InstanceFilter,
String | nstanceState)

515

Argument Description (WM ChangeActivityl nstancesState Argument)
ActivityDefI D pactivity_def_id

I nstanceFil ter pact _inst_filter

I nst anceSt at e activity_inst_state

8.2.5.6 Terminatel nstances
This method is the binding for the WM T er minatePr ocessl nstances function.

Ter m nat el nst ances (
in Filter InstanceFilter)

Argument Description (WM Ter minatePr ocessl nstances Argument)

I nstanceFil ter pproc_inst _filter

8.2.5.7 AssignlnstancesAttribute
This method is the binding for the WM AssignPr ocessl nstancesAttribute function.

Assi gnl nstancesAttribute (

in Filter InstanceFilter,
in String Nane,
in Variant Value)

Argument Description (WM AssignProcessl nstancesAttribute Argument)
I nst anceFil ter pact _inst_filter

Nane attribute_nane

Val ue pattribute_val ue

8.2.5.8 AssignActivityl nstancesAttribute
This method is the binding for the WM AssignActivityl nstancesAttribute function.

Assi gnActivitylnstancesAttribute (
in String ActivityDeflD,

i Filter InstanceFilter,

String Nane,

Vari ant Val ue)

3|3‘3

Argument Description (WM AssignActivityl nstancesAttribute Argument)
ActivityDeflD pactivity_def _id

I nstanceFil ter pact _inst_filter

Nane attribute_nanme

Val ue pattribute_val ue

8.2.5.9 Abortlnstances
This method is the binding for the WM Abor tPr ocessl nstances function.

Abort |l nstances (
in Filter InstanceFilter)

Version 2.0 Page 106 of 106
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Argument Description (WM AbortProcessl nstances Argument)

I nstanceFil ter pproc_inst_filter

8.2.5.10 AddActivity

This method is the binding for the WM AddEntity function, when used to add an activity
definition to a process definition.

ActivityDefinition AddActivity (
in String Nane)

Argument Description (WM AddEntity Argument)

Nane entity_nane
ActivityDefinition entity
8.2.5.11 AddApplication

This method is the binding for the WM AddEntity function, when used to add an application
definition to a process definition.

ApplicationDefinition AddApplication (
in String Nane)

Argument Description (WM AddEntity Argument)
Nane entity_nane

ApplicationDefinit entity

ion

8.2.5.12 AddData

This method is the binding for the WM AddEntity function, when used to add process relevant
datato a process definition.

ProcessDat aDef i niti on AddDat a (
in String Nane)

Argument Description (WM AddEntity Argument)
Nane entity_nane

ProcessDat aDefi ni t entity

ion

8.2.5.13 AddParticipant

This method is the binding for the WM AddEntity function, when used to add a participant to a
process definition.

Partici pant Definition AddParti ci pant (
in String Nane)

Argument Description (WM AddEntity Argument)

Nane entity_nane

Parti ci pant Definit entity

ion

Version 2.0 Page 107 of 107

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

8.2.5.14 AddTransition

This method is the binding for the WM AddEntity function, when used to add transition
information to a process definition.

TransitionDefinition AddTransition (
in String Nane)

Argument Description (WM AddEnRtity Argument)
Nane entity_nanme
TransitionDefiniti entity

on

8.2.6 Process|nstance

The Processl nstance object class corresponds to the WM TProcessinst data type. Process instance objects
are not externally creatable. They are returned by the Server object’ s ListProcessl nstances method, and by
the Processlnstance property of an Activitylnstance or WorklItem object.

8.2.6.1 Properties
A Processlnstance object has the following read-only properties:

Name Type Description

Attributes Collection WM OpenProcess| nstanceAttributesL ist
DataReference String WMTProcessinst.data reference
ID String WMTProcesslnst.proc_inst_id
Name String WM T Process|nst.process_name
Participants Collection WMTProcesslnst.proc_participants
Priority Integer WMTProcesslnst.priority
ProcessDefinition ProcessDefinition | WM GetProcessDefinition
ProcessDefinitionID | String WMTProcessinst.proc_def id
State String WMTProcess|nst.state

States Collection WM OpenProcess| nstanceStatesL ist

All of these properties are read-only, except for the State property. Updating this property has the same
effect as calling the ChangeState method. The Attributes and States properties take a Filter parameter.
The ProcessDefinition property is aconvenience. It calls the GetProcessDefinition method on the session
from which the process instance was obtained, passing the ProcessDefinitionl D property value.

8.2.6.2 Methods
A Processlnstance object has the following methods:

Signature Description
Processlnstance Start WM StartProcess
Terminate WM TerminateProcess
ChangeState WM ChangeProcessl nstanceState
in String State
AssignAttribute WM A ssignProcessl nstanceAttribute
in String Name
in Variant Value
Abort WM AbortProcessl nstance
Version 2.0 Page 108 of 108

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Note that the Server parameters to these methods isimplicit. They use the server from which the process
instance was obtained.

8.2.6.3 Start
This method is the binding for the WM Star tPr ocess function.

Processl nstance Start ()

Argument Description (WM StartProcess Argument)

Processl nst ance pnew_proc_inst_id

8.2.6.4 Terminate
This method is the binding for the WM T er minatePr ocessl nstance function.

Term nate ()

8.2.6.5 ChangeState
This method is the binding for the WM ChangePr ocessl nstanceState function.

ChangeSt at e (
in String State)

Argument Description (WM ChangePr ocessl nstanceState Argument)

State pproc_inst_state

8.2.6.6 AssignAttribute
This method is the binding for the WM AssignPr ocessl nstanceAttribute function.

AssignAttribute (
in String Nane,

in Variant Value)

Argument Description (WM AssignProcessl nstanceAttribute Argument)
Nane attribute_nane

Val ue pattribute_val ue

8.2.6.7 Abort

This method is the binding for the WM Abor tProcessl nstance function.

Abort ()

8.2.7 Activity Definition

The ActivityDefinition class corresponds to the Workflow Process Activity entity in WPDL. Activity
definition objects are not externally creatable. They are returned in the Activities property of a
ProcessDefinition object.

8.2.7.1 Properties
An ActivityDefinition object has the following properties:

Name Type Description
Attributes Collection WM OpenEntityAttributesList
Version 2.0 Page 109 of 109

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

ID String WPDL <activity id>

I mplementation ApplicationDefti | WPDL <implementation>
ntion
ProcessDefintion

Name String WPDL <name>

8.2.8 Activity Instance

The Activitylnstance class corresponds to the WM TActivitylnst data type. Activity instance objects are not
externally creatable. They are returned by the Server object’s ListActivitylnstances method, and by the
Activitylnstance property of a Workltem object.

8.2.8.1 Properties
An Activitylnstance object has the following properties:

Name Type Description

Attributes Collection WM OpenActivityl nstanceAttributesList
DataReference String WMTACctivitylnst.data reference
ID String WMTActivitylnst.activity inst_id
Name String WMTActivitylnst.activity_name
Participants Collection WMTACctivitylnst.proc_participants
Priority Integer WMTActivitylnstance.priority
Process| nstance Process| nstance WM GetProcessl nstance
ProcessinstancelD | String WMTActivitylnstance.proc_inst_id
State String WMTACctivitylnstance.state

States Collection WM OpenActivityl nstanceStatesL ist

All of these properties are read-only, except for the State property. Updating this property has the same
effect as calling the ChangeState method. The Attributes and States properties take a Filter parameter.
The Processlnstance property is a convenience. It calls the GetProcessl nstance method on the server from
which the activity instance was obtained, passing the Processlnstancel D property value.

8.2.8.2 Methods
An Activitylnstance object has the following methods:

Signature Description

ChangeState WM ChangeA ctivityl nstanceState
in String State

AssignAttribute WMAssignActivityl nstanceAttribute
in String Name
in Variant Value

Note that the Server parameters to these methods isimplicit. They use the server from which the activity
instance was obtained.

8.2.8.3 ChangeState
This method is the binding for the WM ChangeA ctivityl nstanceState function.

ChangeSt at e (
in String State)

Version 2.0 Page 110 of 110
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Argument Description (WM ChangeActivityl nstanceState Argument)

State pactivity_inst_state

8.2.8.4 AssignAttribute
This method is the binding for the WM AssignActivityl nstanceAttribute function.

Assi gnAttribute (
in String Name

in Variant Value)

Argument Description (WM AssignActivityl nstanceAttribute Argument)
Nane attribute_nane

Val ue pattribute_val ue

8.29 Workltem

The Workltem class corresponds to the WM TWorkltem data type. Work item objects are not externally
creatable. They are returned by the Server object’ s ListWorkltem method..

8.2.9.1 Properties
A Workltem object has the following properties:

Name Type Description

Activitylnstance Activitylnstance | WMGetActivitylnstance
ActivitylnstancelD | String WMTWorkltem.activity inst
Attributes Callection WM OpenWorkltemAttributesL ist
DataReference String WMTWorkltem.data reference
ID String WMTWorkltem.workitem_id
Name String WMTWorkltem.workitem name
Parti cipant String WMTWorkltem.proc_participant
Priority I nteger WMTWorkltemance.priority
Processl nstance Processl nstance WM GetProcess| nstance
ProcessinstancelD | String WMTWorkltemance.proc inst_id

All of these properties are read-only. The Attributes property takes a Filter parameter. The
Activitylnstance and Processl nstance properties are a convenience. They call the GetProcessl nstance and
GetActivitylnstance methods, respectiively, on the server from which the work item was obtained, passing
the Processlnstancel D or Activitylnstancel D property value.

8.2.9.2 Methods
A Workltem object has the following methods:

Signature Description

AssignAttribute WMAssignWorkltemAdttribute
in String Name
in Variant Value

Complete WM CompleteWorkltem

Reassign WM ReassignWorkltem
in String SourceUser
in String TargetUser

Note that the Server parameters to these methods isimplicit. They use the server from which the work item
was obtained.

Version 2.0 Page 111 of 111
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

8.2.9.3 AssignAttribute
This method is the binding for the WM AssignWor kltemAttribute function.

Assi gnAttribute (
in String Nane,

in Variant Val ue)

Argument Description (WM AssignWor kltemAttribute Argument)
Nane attribute_nanme
Val ue pattribute_val ue

8.2.9.4 Complete
This method is the binding for the WM CompleteW or kltem function.

Conpl ete ()
8.2.9.5 Reassign
This method is the binding for the WM RessignWorkltem function.
Reassi gn (
in String SourceUser,
in String TargetUser)
Argument Description (WM ReassignWorkltem Argument)
Sour ceUser psour ce_user
Tar get User pt ar get _user

8.2.10 Transition Definition

The TransitionDefinition class corresponds to the Transition Information entity in WPDL. Transition
definition objects are not externally creatable. They are returned in the Transitions property of a
ProcessDefinition object.

8.2.10.1 Properties
A TransitionDefinition object has the following properties:

Name Type Description

Attributes Collection WM OpenEntityAttributesList
From ActivityDefinition | WPDL <trans from>

ID String WPDL <transition id>

Name String WPDL <name>

To ActivityDefinition | WPDL <trans to>

8.2.11 Participant Definition

The ParticipantDefinition class corresponds to the Workflow Participant Definition entity in WPDL.
Participant definition objects are not externally creatable. They are returned by the
ListParticipantDefinitions method of a Server object, or in the Participants property of a ProcessDefinition
object.

Version 2.0 Page 112 of 112
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3)

8.2.11.1 Properties
A ParticipantDefinition object has the following properties:

Name Type Description

Attributes Callection WM OpenEntityAttributesList
ID String WPDL <participant id>
Name String WPDL <name>

Type Integer WPDL <participant type>

01-July-98

8.2.12 Application Definition

The ApplicationDefinition class corresponds to the Workflow Application Definition entity in WPDL.
Application definition objects are not externally creatable. They are returned by the
ListApplicationDefinitions method of a Server object, or in the Applications property of a
ProcessDefinition object.

8.2.12.1 Properties
An ApplicationDefinition object has the following properties:

Name Type Description

Attributes Collection WM OpenEntityAttributesList
ID String

Name String WPDL <tool name>

8.2.13 Process Data Definition

The ProcessDataDefinition class corresponds to the Workflow Process Relevant Data entity in WPDL.
Process data definition objects are not externally creatable. They are returned in the Data property of a
ProcessDefinition object.

8.2.13.1 Properties

A ProcessDataDefinition object has the following properties:

Name Type Description

Attributes Callection WM OpenEntityAttributesList
ID String WPDL <dataid>

Name String WPDL <name>

Type Integer WPDL <datatype>

8.2.14 Attribute

The Attribute object class corresponds the a single attribute of aworkflow object. . Attribute objects are
not externally creatable. They are returned in the Attributes property of aworkflow object, whichisa
collection of attribute objects indexed by name.

8.2.14.1 Properties
An Attribute object has the following properties:

Name Type WM Fetch...Attribute Parameter
DataType I nteger attribute type

Name String attribute_name

Version 2.0

Copyright © 1993, 1999, The Workflow Management Coalition

Page 113 of 113

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

[Value | Variant | pattribute value |

The name and data type properties are read-only Updating the value of an attribute has the same effect as
calling WMAssign...AttributeV alue on the object from which the attribute was obtained.

8.3 OMG IDL Binding

This chapter provides a detailed description of the Workflow Facility Client Application componentsin
terms of OMG IDL. The specification is split into three modules, the first one providing generic interfaces
and operations, the others defining the specific interfaces and functions for the Application Client Interface
and the Process Definition Interface.

8.3.1 TheWaorkflow Facility Base Module

The Workflow Facility Base module contains definitions common to al of the various interfaces described

in the Workflow Reference Model.

The interfaces defined by this module are;

- Attribute interface, which provides access to attributes of various types of workflow objects.
Attributelist interface, which provides operations to handle filtered lists of Attributes.
Filter interface, which is used to define queries for workflow objects issued agaist the Workflow
Enactment Service who owns these objects.
WorkflowObject interface, which defines generic operations and attributes common to many workflow
objects

The following abbreviated IDL summarizes the interfaces contained in the CfWFBase module.

module CfWorkflowFacilityBase {
... // data type and general exception definitions

interface Filter {
... // query filter object definitions
};

interface Attribute {
... // workflow object attribute definitions

interface AttributelList {
... // workflow object attribute list definitions
+

interface WorkflowObject {
... // workflow object definitions
h

};
The following sections describe the contents of the CfWFBase module in detail.

8.3.1.1 Data Typesand General Exceptions

The following data types and exceptions are defined in the CfWFBase module and are used in various
interfaces of the Workflow Facility.

Version 2.0 Page 114 of 114
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

// TYPE DEFINITIONS

typedef string WMTName ;
typedef WMTName WMTState;
typedef sequence<WMTState> WMTStates;

typedef string WMTId;
typedef integer WMTErrorCode
// EXCEPTION DEFINITIONS

exception InvalidFilter (WMTErrorCode badFilter);
exception NoMoreData ();

exception InvalidState();

exception TransitionNotAllowed();

exception AttributeAsignmentFailed();

exception InvalidAttribute();

Each workflow object has a name and a state. WM TName and WM T State define the types to specifiy the
corresponding attributes. In addition, the WM TName type is used to define any kind of name-like attribute,
e.g., to specifiy named references to objects outside the scope of the Workflow Facility specification.
WMTStates handles alist of states. The WMTId type is used for identification of persistent object
references. The WM TErrorCode type is used to provide additional information with some Exceptions, e.g.,
the InvalidFilter exception uses the Error Code to indicate the specific problem with the Filter.

The InvalidFilter and NoMoreData exceptions are related to processing of filtered queries and query result
lists. InvalidState and TransitionNotAllowed exceptions are raised by state-changing operations on
workflow objects.

8.3.1.2 Filter Interface
The Filter interface is used to specify the filter criteriafor a query against the set of objects of a specific
type.

interface Filter {

attribute long filterType;
attribute long filterLength;
attribute WMTName attributeName;
attribute integer comparison;
attribute string filterString;

8.3.1.3 Attribute I nterfaces

The Attribute interface is used to access attributes of workflow objects. Attribute data are accessed by
value; the attributeValue is of type any and is further specified by attributeType.
There are basically three types of attributes of a workflow object that can be accessed viathis interface:
- The standard attributes described in this document (e.g., Name)
Vendor specific attributes associated with a particular object type (e.g., ‘ ProcessClass’ attribute of a
ProcessDefinition)
User defined attributes associated with particular object instances (e.g., ‘ CustomerNumber’ attribute of
aparticular Process| nstance)

interface Attribute {
attribute WMTName attributeName;
attribute string attributeType;
attribute long attributelLength;
attribute any attributeValue;

};

typedef sequence<Attribute> Attributes;

The AttributeList interface provides iterator operations for handling of alist of Attributes; the
corresponding factory operation for this interface can be found in an workflow object interface. The

Version 2.0 Page 115 of 115
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

fetchAttribute operation gets the next Attribute from the list, the fetchAttributes operation gets the next
howMany Attributes from the list; if thelist is empty, the NoMoreData exception is raised.

interface AttributelList {
Attribute fetchAttribute()
raises (NoMoreData);

Attributes fetchAttributes(long howMany)
raises (NoMoreData);

8.3.1.4 Workflow Object I nterface

The Workflow Object interface defines the attributes and operations common to most workflow objects.
Each WorkflowObject has a Name, a State and a set of Attributes associated with it.

A list of valid states for a particular WorkflowObject can be obtained using the listValidStates operation;
the InvalidState exception is raised when a state change to an unknown state is requested. getState obtains
the current State of aworkflow object and setState changes the State; the TransitionNotAllowed exception
is raised when the transition from the current state to the new state is not allowed.

OpenAttributesList is the factory operation for an AttributeList, allowing for a query for attributes;
getAttributeValue supports access to attributes by name. The AssignAttribute(s) operations assign new
values to Attributes. The InvalidAttribute exception is raised on requests for attributes not defined for the
workflow object; tha AttributeA ssignmentFailed exception is raised when the Attribute could not be
modified, e.g., isread-only.

interface WorkflowObject {

attribute WMTName name;
attribute WMTId id;

void listValidStates (
in Filter filter,
in boolean countFlag,
out WMTStates states,
out long count);

void changeState (in WMTState newState)
raises (TransitionNotAllowed, InvalidState);

void getState (out WMTState currentState);

void openAttributelList (

in Filter filter,

in boolean countFlag,

out AttributeList attributes,
out long count)

raises (InvalidFilter);

void getAttributeValue (
in WMTName name
out Attribute attribute)
raises (InvalidAttribute);

void assignAttribute (in Attribute attribute)
raises (InvalidAttribute, AttributeAssignmentFailed);

void assignAttributes (in Attributes attributes)
raises (InvalidAttribute, AttributeAssignmentFailed);

};

8.3.2 Workflow Application Client Server Interface

Version 2.0 Page 116 of 116
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

The Workflow ApplicationClientServer interface handles the connection of a particular workflow user to an
Enactment Service and provides access oto the workflow objects accessible through this Enactment Service.
The connect operation initializes the ApplicationClientServer; the context of the connection is defined by
the engineName and the scope. The ConnectFailed excpetion is raised when a connection could not be
established. The disconnect operation serves as a destructor for the ApplicationClientServer.

Access to the workflow objects accessible through the connection is supported by providing factory
methods for interfaces managing access to lists of workflow objects: the Open...sList operation take afilter
astheir first argument (see the CFWFBase module descritpion for details), the countFlag parameter
indicates whether the number of elements in the query result should be returned. A NotConnected exception
is raised when no connection was established. The query results are bound to a connection and are
invalidated when the connection is terminated.

Operations are provided to get a Processl nstance, Activitylnstance or Workltem object viaits identifier.

interface ApplicationClientServer {

attribute CfWFBase :: WMTName engineName;
attribute CfWFBase :: WMTName scope;

void connect(
in CfWFBase :: WMTName userld,
in string password)
raises (ConnectFailed);

void disconnect()
raises (NotConnected);

ProcessDefinitionList openProcessDefinitionsList(
in CfWFBase :: Filter filter,
in boolean countFlag)

raises (InvalidFilter, NotConnected);

ProcesslnstancelList openProcesslInstancesList (
in CfWFBase :: Filter filter,
in boolean countFlag)

raises (InvalidFilter, NotConnected);

Activitylnstancelist openActivitylnstancesList (
in CfWFBase :: Filter filter,
in boolean countFlag)

raises (InvalidFilter, NotConnected);

WorkList openWorkList (
in CfWFBase :: Filter filter,
in boolean countFlag)
raises (InvalidFilter, NotConnected);

Processinstance getProcesslinstance(
in CfWFBase :: WMTId processlinstanceld)
raises (Invalidld);

Activitylnstance getActivitylnstance(
in CfWFBase :: WMTId processlnstanceld,
in CfWFBase :: WMTId activitylnstanceld)
raises (Invalidld);

Workitem getWorkitem(

in CfWFBase :: WMTId processlnstanceld,
in CfWFBase :: WMTId workltemld)
raises (Invalidld);
h
Version 2.0 Page 117 of 117

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

8.3.2.1 Process Definition Interface

The Process Definition interface provides factory operation for Process Instances and supports Process
Management operations on workflow objects related to the Process Definition: change of State and change
of a specific Attribute’ s value for all members of afiltered set of Process Instances and Activity Instances.
The ProcessDefinition interface inherits attributes and operations from WorkflowObject.

interface ProcessDefinition : CfWFBase :: WorkflowObject {

Processlinstance createProcessinstance (
in CfWFBase :: WMTName instanceName)
raises (NotConnected);

void changeProcesslInstancesState (
in CfWFBase :: Filter filter,
in CfWFBase :: WMTState newState)
raises (NotConnected, TransitionNotAllowed
InvalidState);

void abortProcesslinstances (
in CfWFBase :: Filter filter)
raises (NotConnected, TransitionNotAllowed);

void terminateProcesslinstances (
in CfWFBase :: Filter filter)
raises (NotConnected, TransitionNotAllowed);

void assignProcessinstancesAttribute (
in CfWFBase :: Filter filter,
in CfWFBase :: Attribute attribute)
raises (NotConnected, InvalidFilter, InvalidAttribute,
AttributeAssignmentFailed);

void changeActivitylnstancesState (
in CfWFBase :: Filter filter,
in CfWFBase :: WMTState newState)
raises (NotConnected, InvalidFilter, TransitionNotAllowed,
InvalidState);

void assignActivitylnstancesAttribute (
in CfWFBase :: Filter filter,
in CfWFBase :: Attribute attribute)
raises (NotConnected, InvalidFilter, InvalidAttribute,
AttributeAssignmentFailed);

8.3.2.2 Process | nstance I nterface

The Processlnstance interface provides operations to access and modify the state and the attributes of a
Process I nstance object.

State changes can be performed using the start, terminate or abort operations. Additional state transitions
may be supported by an EnactmentService(see the WorkflowObject :: changeState() operation described
above). The getParentProcessDefinition operation returns the ProcessDefinition object that was used to
create the specific Processlnstance. The listAssignedParticipants operation provides the list of workflow
Participants associated to the Process Instance. The Processl nstance interface inherits attributes and
operations from WorkflowObject. All operations require an active connection to the Enactment Service.

interface Processinstance : CfWFBase :: WorkflowObject{

attribute CfWFBase :: WMTDataRef dataReference;
attribute long priority;

Version 2.0 Page 118 of 118
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

ProcessDefinition getParentProcessDefinition ();
void start ()
raises (NotConnected, TransitionNotAllowed);

void terminate();
raises (NotConnected, TransitionNotAllowed);

void abort();
raises (NotConnected, TransitionNotAllowed);

CfWFBase :: WMTWFlIParticipants listAssignedParticipants ()
raises (NotConnected);

};

8.3.2.3 Activity Instance I nterface

The Activity Instance interface provides operations to access and modify the attributes and the state of an
Activitylnstance object.

The getParentProcess nstance operation returns the Processl nstance object that owns the specific
Activitylnstance. The listAssignedParticipants operation provides the list of workflow Participants
associated to the Activity Instance. The Activitylnstance interface inherits attributes and operations from
WorkflowObject. All operations require an active connection to the Enactment Service.

interface Activitylnstance : CfWFBase :: WorkflowObject {

attribute CfWFBase :: WMTDataRef dataReference;
attribute long priority;

Processinstance getParentProcessinstance ();

CfWFBase :: WMTWFlIParticipants listAssignedParticipants ()
raises (NotConnected);

};

8.3.2.4 Work Item Interface

The Workltem interface provides operations to access and modify the attributes and the state of a Workltem
object.

The get- and completeWorkitem operations change the State of a Workltem. getA ssignedParticipant returns
the workflow participant currently assigned to the work item; reassignWorkltem assigns it to another

participant.

interface Workltem : CfWFBase :: WorkflowObject {

attribute CfWFBase :: WMTDataRef dataReference;
attribute long priority;

Processinstance getParentProcesslinstance ();
Activitylnstance getParentActivitylnstance ();
void reassign (
in CfWFBase::WMTWFlIParticipant sourceUser,
in CfWFBase::WMTWFlIParticipant targetUser)

raises (NotConnected, InvalidSourceUser, InvalidTargetUser);

void get ()
raises (NotConnected, TransitionNotAllowed);

void complete()

Version 2.0 Page 119 of 119
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3)

01-July-98

raises (NotConnected, TransitionNotAllowed);

CfWFBase :: WMTWFlIParticipant getAssignedParticipant()
raises (NotConnected);

};

8.3.2.5 Filtered List Processing

The following interfaces provide iterators for results returned from filtered list requests; see the section on

Attributes for a description of the iterator functions.

typedef sequence<Processlnstance> Processinstances;
typedef sequence<Activitynstance> Activitylnstances;
typedef sequence<Workltem> Workltems;

interface ProcessDefinitionList {
attribute long count;

ProcessDefinition fetchProcessDefinition()
raises (NoMoreData);

ProcessDefinitions fetchProcessDefinitions(
in unsigned long howMany)
raises (NoMoreData);
+
interface ProcessinstancelList {
attribute long count;

Processinstance fetchProcesslnstance()
raises (NoMoreData);

Processinstances fetchProcesslnstances(
in unsigned long howMany)
raises (NoMoreData);
+
interface ActivitylnstancelList {
attribute long count;

Activitylnstance fetchActivitylnstance()
raises (NoMoreData);

Activitylnstances fetchActivitylnstances(
in unsigned long howMany) ;
raises (NoMoreData);
+
interface WorkList {
attribute long count;

Workltem fetchWorkltem()
raises (NoMoreData);

Workltem fetchWorkltems(
in unsigned long howMany) ;
raises (NoMoreData);

};

8.3.3 TheProcess Definition M odule

The Process Definition Module contains the interfaces used to create and modify Process Definitions to be

executed by an Enactement Service.
The module defines the following interfaces:

Version 2.0
Copyright © 1993, 1999, The Workflow Management Coalition

Page 120 of 120

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

ProcessModel Server interface, which handles connection of aworkflow participant with a particular
Enactment Service and provides factory interfaces for access to filtered list of workflow definition
objects owned by that Enactment Service.
ProcessModel interface, which represents a workflow model; this interface serves as a factory for
components of the process model, such as ActivityDefinitions and TransitionDefinitions.
ActivityDefinition interface, which represents a node in a process model
TransitionDefinition interface, which represents a connection between ActivityDefinitions
DataDefinition interface, which defines the Process Relevant Data used by a particular process model
ApplicationDefinition interface, which represents an application that can be used to support processing
of an Activity during execution of a process model
ParticipantDefinition interface, which represents a resource that might receive Work Items during
execution of a process model

The following abbreviated IDL summarizes the interfaces contained in the CfWFBase module.

#include “CfWFBase.idl”
module CfWFProcessDefinition {

... // Data type and specific exception definitions

interface ProcessModel; // Forward declaration
interface ApplicationDefinition; // Forward declaration
interface ParticipantDefinition; // Forward declaration

interface ProcessModellList {
. // lterator for process model query result

s

interface ApplicationDefinitionList {
. // lterator for application definition query result

s

interface ParticipantList {
. // lterator for participant definition query result

s

interface ProcessDefinitionServer {
. // process definition server object definitions

s

interface ProcessModel : CfWFBase::WorkflowObject{
. // process model object definitions

s

interface ApplicationDefinition : CfWFBase::WorkflowObject {
. // application definition object definitions

s

interface ParticipantDefinition : CfWFBase::WorkflowObject {
... // participant definiton object definitions

s

8.3.3.1 Data Types and Specific Exceptions
The following data types and exceptions are specific to the Process Definition Client module.

Version 2.0 Page 121 of 121
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

// TYPE DEFINITIONS

// SPECIFIC EXCEPTION DEFINITIONS

exception NotConnected();
exception ConnectFailed(CfWFBase: :WMTErrorCode);
exception Invalidld();

The exceptions defined here deal with poblems related to management of the connection to the Enactment
Service.

8.3.3.2 Process Definition Server Interface

The Process Definition Server Interface handles the connection of a particular workflow user to an
Enactment Service and provides access oto the workflow definition objects accessible through this
Enactment Service.

The connect operation initializes the WorkflowEnactmentServer; the context of the connection is defined by
the engineName and the scope. The ConnectFailed excpetion is raised when a connection could not be
established. The disconnect operation serves as a destructor for the ApplicationClientServer.

Access to the workflow objects accessible through the connection is supported by providing factory
methods for interfaces managing access to lists of workflow objects: the Open...sList operation take afilter
astheir first argument (see the CFWFBase module descritpion for details), the countFlag parameter
indicates whether the number of elements in the query result should be returned. A NotConnected exception
israised when no connection was established. The query results are bound to a connection and are
invalidated when the connection is terminated.

interface ProcessDefinitionServer {

attribute CfWFBase :: WMTName engineName;
attribute CfWFBase :: WMTName scope;

void connect(
in CfWFBase :: WMTName userld,
in string password)
raises (ConnectFailed);

void disConnect()
raises (NotConnected);

ProcessModel createProcessModel(
in CfWFBase :: WMTName processName)
raises (NotConnected);

ProcessModelList openProcessModelsList(
in CfWFBase :: Filter filter,
in boolean countFlag)
raises (InvalidFilter, NotConnected);

ApplicationDefinitionList openApplicationDefinitionsList (
in CfWFBase :: Filter filter,
in boolean countFlag)
raises (InvalidFilter, NotConnected);

ParticipantDefinitionList openParticipantDefinitionsList (
in CfWFBase :: Filter filter,

in boolean countFlag,
out WMTActivitylnstancelList activitylnstances,
out long count)

raises (InvalidFilter, NotConnected);

ProcessModel getProcessModel(
in CfWFBase :: WMTId processModel Id)
raises (Invalidld);

Version 2.0 Page 122 of 122
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

ApplicationDefinition getApplicationDefinition(
in CfWFBase :: WMTId applicationDefinitionld)
raises (Invalidld);

ParticipantDefinition getParticipantDefinition(
in CfWFBase :: WMTId participantDefinitionld)
raises (Invalidld);

};

8.3.3.3 Process Moddl | nterface

The Process Model interface provides factory operation for Activity Definitions, Transition Definitions and
Data Definitions contained in a Process Model .
The ProcessDefinition interface inherits attributes and operations from WorkflowObject.

interface ProcessModel : CfWFBase :: WorkflowObject {

ActivityDefinition addActivityDefinition(
in CfWFBase :: WMTName activityName)
raises (NotConnected);

void removeActivityDefinition(
in CfWFBase :: WMTId activityld)
raises (NotConnected);

DataDefinition addDataDefinition(
in CfWFBase :: WMTName dataName,
in CfWFBase :: WMTType dataType)
raises (NotConnected);

void removeDataDefinition(
in CfWFBase :: WMTId datald)
raises (NotConnected);

TransitionDefinition addTransitionDefinition(
in CfWFBase :: WMTName transitionName,
in CfWFBase :: WMTId sourceActivityDefinitionld,
in CfWFBase :: WMTId targetActivityDefinitionld)
raises (NotConnected, Invalidld);

void removeTransitionDefinition(

in CfWFBase :: WMTId transitionld)
raises (NotConnected);

};

8.3.3.4 Application Definition Interface

The ApplicationDefinition interface provides operations to access and modify the attributes of an
Application Definition object. All operations require an active connection to the Enactment Service.

interface ApplicationDefinition : CfWFBase :: WorkflowObject{

};

8.3.3.5 Participant Definition I nterface

The ParticipantDefinition interface provides operations to access and modify the attributes of a Participant
Definition object. All operations require an active connection to the Enactment Service.

Version 2.0 Page 123 of 123
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

interface ParticipantDefinition : CfWFBase :: WorkflowObject{
attribute WMTParticipantType type;

8.3.3.6 Activity Definition I nterface

The ActivityDefinition interface provides operations to access and modify the attributes of a Activity
Definition object.

The getParentProcessM odel operation returns the ProcessModel object that was used to create the specific
ActivityDefinition. All operations require an active connection to the Enactment Service.

interface ActivityDefinition : CfWFBase :: WorkflowObject{

attribute WMTImpementationType implementationType;
attribute CfWFBase :: WMTId implementationld;

ProcessModel getParentProcessModel ();

8.3.3.7 Transition Definition Interface

The TransitionDefinition interface provides operations to access and modify the attributes of a Transition
Definition object.

The getParentProcessM odel operation returns the ProcessModel object that was used to create the specific
TransitionDefinition. All operations require an active connection to the Enactment Service.

interface TransitionDefinition : CfWFBase :: WorkflowObject {

attribute CfWFBase :: WMTId sourceActivityld;
attribute CfWFBase :: WMTId targetActivityld;

ProcessModel getParentProcessModel ();

8.3.3.8 Filtered List Processing

The following interfaces provide iterators for results returned from filtered list requests; see the section on
Attributes for a description of the iterator functions.

typedef sequence<ProcessModel> ProcessModels;
typedef sequence<ActivityDefinition> ActivityDefinitions;

typedef sequence<TransitionDefinition> TransitionDefinitions;

typedef sequence<ApplicationDefinition> ApplicationDefinitions;
typedef sequence<ParticipantDefinition> ParticipantDefinitions;

interface ProcessModelsList {
attribute long count;

ProcessModel fetch();
raises (NoMoreData);

ProcessModels fetchN(
in unsigned long howMany) ;
raises (NoMoreData);

Version 2.0 Page 124 of 124
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

interface Agtivipyberinitjgpstist { count;

ActivityDefinition fetch ();
raises (NoMoreData);

ActivityDefinition fetchN(
in unsigned long howMany) ;
raises (NoMoreData);

};

interface TransitionDefinitionsList {
attribute long count;

TransitionDefinition fetch ();
raises (NoMoreData);

TransitionDefinitions fetchN(
in unsigned long howMany) ;
raises (NoMoreData);

};

interface ApplicatonDefinitionsList {
attribute long count;

ApplicationDefinition fetch ();
raises (NoMoreData);

ApplicationDefinitons fetchN(
in unsigned long howMany) ;
raises (NoMoreData);

};

interface ParticipantDefinitionsList {
attribute long count;

ParticipantDefinition fetch ();
raises (NoMoreData);

ParticipantDefinitions fetchN(
in unsigned long howMany) ;
raises (NoMoreData);

8.3.4 Relationship to WM C Standards

The C-language description has been converted into an object oriented specification. Where possible, the
syntax of C-functions has been preserved when converting to operations on objects. Hereis alist of
changes:

- The operations dealing with States and Attributes of workflow objects have been moved into the
WorkflowObject class. The generic operations replace the object-type specific ones defined in the C-
API.

Processing of filtered lists is done in the same way as in the C-language specification, using an Iterator
instead of WM TPQueryHandle. The Iterator might return more than one element at atime.

The limits on the size of string type attributes have been removed. Same for limit on the number of
Participants associated with an Activitylnstance or Processlnstance.

The Unique Id attributes of the various workflow entities are replaced by their object 1d (not an explicit
attribute).

ReturnCodes have been replaced by exceptions.

Version 2.0 Page 125 of 125
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

9. Appendix D: Audit Data

The following describes the Audit Data related to the functions? defined in this specification. The WfMC
Audit Data Specification identifies events related to workflow objects (in general changes of state or of
attributes) and describes the format of Audit Data to be reported for these events. Events are in general
triggered by an external interaction with the Enactment Service, e.g., viaan operation define in this
specification. An event can be a directly associated to the operation (e.g., WM StartProcess| nstance triggers
a WM Processl nstancesStarted event) or indirectly triggered by such an interaction, mediated by the
Enactment Service (e.g., WM StartProcessi nstance will cause state changes for the start activities of a
process, resulting in WMActivityl nstanceStateChanged events). An implementation of an Enactment
Service complies with the WIMC Audit Data Specification if Audit Records are supported for all events
identified in that document. For convenience of the reader we have included references to Audit-relevant
events triggered by the functions described in this specification; for each operation the Audit Data Record
and the directly associated event is stated. The following description provides pointers to the corresponding
definitions in the WM C Audit Data Specification; please refer to this document for details.

9.1 Auditing Process Definitions

The following table identifies the Audit Datafor WAPI functions related to state changes Process
Definitions. Operation refersto aaWAPI function defined in this specification, Event Set refers to a section
in the WM C Audit Data Specification and Event identifies the event reported in the Audit Data record.

Operation Audit Data Record Event
WM ChangeProcessDefinitionState Change Process WM ChangedProcessDefinitionState
Definition State

9.2 Auditing Process Instances

The following table identifies the Audit Data for WAPI functions related to state changes and changes of
attributes of activity instances. Operation refers to a aWAPI function defined in this specification, Event Set
refersto asection in the WfMC Audit Data Specification and Event identifies the event reported in the
Audit Data record.

Operation Audit Data Record Event

WM CreateProcessl nstance Create/Start WM CreatedProcess| nstance
Process/Subprocess
Instance State

WM StartProcessl nstance Create/Start WM StartedProcess| nstance
Process/Subprocess
Instance State

WM ChangeProcessl nstancesState Change WM ChangedProcessl nstanceState
Process/Subprocess
Instance State

WM ChangeProcessl nstanceState Change WM ChangedProcessl nstanceState
Process/Subprocess
Instance State

WM TerminateProcessl nstances Change WM TerminatedProcessl nstance
Process/Subprocess
Instance State

WM TerminateProcess| nstance Change WM TerminatedProcessl nstance

2 The new Process Definition functions are not covered here at the moment.

Version 2.0 Page 126 of 126
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3)

01-July-98

Process/Subprocess
Instance State

WM A bortProcessl nstances

Change
Process/Subprocess
Instance State

WM A bortedProcess| nstance

WM A bortProcessl nstance

Change
Process/Subprocess
Instance State

WM A bortedProcess| nstance

WM AssignProcessl nstancesAttribute

Assign Process
Instance Attributes

WM A ssignedProcessl nstanceAttributes

WM AssignProcessl nstanceAttribute

Assign Process
Instance Attributes

9.3 Auditing Activity Instances

The following table identifies the Audit Data for WAPI functions related to state changes and changes of
attributes of activity instances. Operation refers to a aWAPI function defined in this specification, Event Set
refersto a section in the WfMC Audit Data Specification and Event identifies the event reported in the

Audit Data record.

Operation

Audit Data Record

WM A ssignedProcessl nstanceAttributes

Event

WM ChangeA ctivityl nstancesState Change Activity WM ChangedA ctivityl nstanceState
Instance State

WM ChangeA ctivityl nstanceState Change Activity WM ChangedA ctivityl nstanceState
Instance State

WMASssignActivitylnstancesAttribute | Assign Activity WM A ssignedA ctivityl nstanceAttributes
Instance Attributes

WM A SssignActivitylnstanceAttribute Assign Activity WM A ssignedA ctivityl nstanceAttributes

9.4 Auditing Workitems

Instance Attributes

The following table identifies the Audit Data for WAPI functions related to work items. Operation refers to
aaWAPI function defined in this specification, Event Set refers to a section in the WM C Audit Data
Specification and Event identifies the event reported in the Audit Data record.

Operation Audit Data Record Event

WM AssignWorkitemAttribute Assign Workitem WM A ssignedWorkitemAttributes
Attributes

WM ChangeWorkitemState Change Workitem WM ChangedWorkitemState
State

WM GetWorkitem Change Workitem WM Sel ectedWorkitem (optional)
State

WM CompleteWorkitem Change Workitem WM CompletedWorkitem
State

WM ReassignWorkitem Assign/Reassign WM ReassignedWorkitem
Workitem

Version 2.0

Copyright © 1993, 1999, The Workflow Management Coalition

Page 127 of 127

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

10. Appendix E: Conformance Profiles

This chapter deals with definition of criteriafor a specific implementation of a Workflow Enactment
Service to be conformant with the WAPI specification. Rather than requesting an implementation to support
all of the functions specified above to conform with the WfMC standard, we define various levels of
conformance. A set of Profilesis defined, each profile identifying a set of operations that address a specific
usage scenario. An implementation of an Enactment Service might choose to comply with some, but not
necessarily al of the Profiles.

10.1 Philosophy and Approach

The following conformance profiles are non-exclusive sets of functions from the WARPI2 specification.
They strike a balance between the Vendor’ s desire to simplify the conformance process and the Customer’s
desire to have a straightforward and understandable conformance statement. The Conformance Profiles
achieve this balance through the use of required WAPI Functions within optional profiles -- by definition,
any profileisoptional but its functionality is not. The philosophy behind their organization is as follows:

Their basic structure is easy to understand. The framework is understandable to customers and vendors
who may not be intimately familiar with the specification and the history of its devel opment.

They provide flexibility for vendors by avoiding an “ all-or-nothing” conformance framework. The profiles
mirror the general capabilities of today’ s workflow products. Vendors may choose to support any number
of the profiles, but do not have to support them all -- we will measure conformance on a profile-by-profile
basis. For example, avendor could choose to provide only WorkList Handler support, and could earn a
conformance certification just for that Profile.

Each Profile defines a set of functions that deliver business value to the customer in a predictable,
meaningful way. Customers can evaluate products using these conformance profiles. Each profile provides
ameaningful service between the vendor’s product and the customer’s client applications that use the
profile. Customers want behavioral consistency across different implementations of this interface; that
consistency isthe result of the simple nature of these profiles.

10.2 Practice and Policy

A vendor can not claim conformance to thisor any other WfM C specification unless specifically
authorized to makethat claim by the WfMC. WfMC grantsthis permission only upon the
verification of the particular vendor’simplementation of the published specification, according to
applicabletest procedures defined by WfMC.

When a vendor chooses to support a Conformance Profile, all WAPI Functionsin that profile must actually
“do something” in the vendor product representative of that WAPI Function’s purpose. It is not acceptable
to return a“WM_Unsupported” error message for a WAPI Function that is part of a supported profile.

Each vendor must produce documentation showing attribute mappings; i.e., which of their product's
attributes are accessible using any of the attribute WAPI Functions in each supported profile.

Vendors may choose to support additional WAPI functions, along with vendor-specific API functions not
prescribed in the Coalition specification. In such a case, WfMC encourages the vendor to document those
function calls (and their associated attribute mappings) as an addendum to their documentation.

Each implementation must include program stubs for all unsupported WAPI functions. A call to any of
these unsupported functions must return a“WM_Unsupported” error message.

Version 2.0 Page 128 of 128
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

10.3 The WAPI Conformance Profiles and Functions

For each Conformance Profile afunction is defined that allows an application to check whether or not the
specific Profile is supported by the implementation. Each implementation must include all
I s<xxx>Pr ofileSupported() functions. These functions are in the following format:

WM I s<xxx>Pr ofileSupported() - where <xxx> is the name of a particular Conformance Profile -
APl commands are intended to allow a user application to inquire whether a vendor's
implementation of WM functions supports a certain Conformance Profile.

10.3.1 WMIsWorkListHandlerProfileSupported

NAME
WMIswWorkListHandler ProfileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WMIsWorkL istHandler ProfileSupported informs the user application that this WFMC
implementation fully supports all the WorkList Handler functions that comprise the Work List
Handler Conformance Profile.

INTENDED USE

Implementation of this conformance profile provides external worklist handler functionality to a client
application.

WMTEr r Ret Type VWM sWor kLi st Handl er Pr of i | eSupport ed()

Argument Description
No Arguments

ERROR RETURN VALUE

WM TRUE - If Confornmance Profile is supported
WM FALSE - If Conformance Profile is not supported.

WORKLIST HANDLER CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Worklist Handler Conformance Profile:

WM Connect

WM Disconnect

WM OpenWorkList

WM FetchWorkltem
WMCloseWorkList

WM GetWorkltem

WM CompleteWorkltem

WM ReassignWorkltem

WM OpenWorkltemAttributesList
WM FetchWorkltemAttribute
WM CloseWorkltemAttributesList
WM GetWorkltemAttributeValue
WM AssignWorkltemAttribute

RELATED AUDIT EVENTS
The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:

Version 2.0 Page 129 of 129
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

All Audit Events related to state and attribute changes of Work Items, described by the Audit Data
Types ‘ Change Workltem State’ and * Assign Workltem Attributes

Version 2.0 Page 130 of 130
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

10.3.2 WM I sProcessContr ol StatusPr ofileSuppor ted

NAME

WM sProcessContr ol StatusPr ofileSupported - Connect to the WFM Engine for this series of
interactions

DESCRIPTION

The WM I sProcessContr ol StatusPr ofileSupported informs the user application that this WFMC
implementation fully supports all the Process Control Status functions that comprise the Process
Control Status Conformance Profile.

INTENDED USE

Implementation of this conformance profile allows a client application to select and manage
process instances.

WMIEr r Ret Type VWM sProcessCont r ol St at usPr of i | eSupport ed()

Argument Description
No Arguments

ERROR RETURN VALUE

WWTRUE - If Confornmance Profile is supported
WM FALSE - If Conformance Profile is not supported.

PROCESS CONTROL STATUS CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Process Control Status Conformance Profile:

WM Connect

WM Disconnect

WM OpenProcessDefinitionsList

WM FetchProcessDefinition

WM CloseProcessDefinitionsList

WM CreateProcessl nstance

WM StartProcess

WM TerminateProcess| nstance

WM OpenProcessl nstanceStatesList
WM FetchProcessl nstanceState

WM CloseProcess| nstanceStatesL ist
WM ChangeProcess nstanceState

WM OpenProcessl nstancesList

WM FetchProcessl nstance

WM CloseProcess| nstancesL ist

WM GetProcessl nstance

WM OpenProcessl nstanceAttributesList
WM FetchProcessl nstanceAttribute
WM CloseProcess| nstanceAttributesList
WM GetProcess| nstanceAttributeValue
WM AssignProcessl nstanceAttribute

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:

Version 2.0 Page 131 of 131
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

All Audit Events related to state and attribute changes of Process Instances, described by the Audit Data
Types ‘ Change Process / Subprocess Instance State' and ‘ Assign Process/ Subprocess Attributes

Version 2.0 Page 132 of 132
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

10.3.3 WM I sProcessDefinitionPr ofileSupported

NAME
WM sProcessDefintionPr ofileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WM I sProcessDefintionPr ofileSuppor ted informs the user application that this WFMC
implementation fully supports all the Process Defintion functions that comprise the Process
Defintion Conformance Profile.

INTENDED USE

Implementation of this conformance profile enables a client application to display alist of
available process definitions and their respective states.

WMTEr r Ret Type VWM sProcessDef i nti onProfil eSupported()

Argument Description
No Arguments

ERROR RETURN VALUE

WM TRUE - If Confornmance Profile is supported
WM FALSE - If Conformance Profile is not supported.

PROCESS DEFINITION CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Process Defintion Conformance Profile:

WM Connect

WM Disconnect

WM OpenProcessDefinitionStatesList
WM FetchProcessDefinitionState
WM CloseProcessDefinitionStatesList
WM ChangeProcessDefinitionState
WM OpenProcessDefinitionsList

WM FetchProcessDefinition

WM CloseProcessDefinitionsList

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:
All Audit Events related to state changes of Process Definitions, described by the Audit Data Types
‘Change Process Definition State’

Version 2.0 Page 133 of 133
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

10.3.4 WMIsProcessAdminProfileSupported

NAME
WM sProcessAdminProfileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WM I sProcessAdminPr ofileSupported informs the user application that this WFMC
implementation fully supports all the Process Admin functions that comprise the Process Admin
Conformance Profile.

INTENDED USE

Implementation of this conformance profile allows a client application to support global
manipulation of process instances by an administrator. Contrast this set with the Process Control
Status functions which work only on individual process instances.

WMIEr r Ret Type VWM sPr ocessAdmi nProf i | eSupport ed()

Argument Description
No Arguments

ERROR RETURN VALUE

WM TRUE - If Confornmance Profile is supported
WM FALSE - If Conformance Profile is not supported.

PROCESS ADMIN CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Process Admin Conformance Profile;

WM Connect

WM Disconnect

WM ChangeProcess nstancesState

WM TerminateProcess| nstances

WM AbortProcess| nstances

WM AbortProcesslnstance

WM AssignProcess! nstancesAttribute
WM OpenProcessl nstanceStatesL i st
WM FetchProcessl nstanceState

WM CloseProcess| nstanceStatesL ist
WM OpenProcessDefinitionsList

WM FetchProcessDefinition

WM CloseProcessDefinitionsList

WM OpenProcessl nstancesList

WM FetchProcessl nstance

WM CloseProcess| nstancesL ist

WM OpenProcessl nstanceAttributesList
WM FetchProcessl nstanceAttribute
WM CloseProcess| nstanceAttributesList

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:

Version 2.0 Page 134 of 134
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

All Audit Events related to state changes of Process Instances, described by the Audit Data Types
‘Change Process / Subprocess Instance State’

Version 2.0 Page 135 of 135
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

10.3.5 WMIsActivityControl StatusPr ofileSuppor ted

NAME

WM I sActivityControl StatusPr ofileSupported - Connect to the WFM Engine for this series of
interactions

DESCRIPTION

The WM sActivityContr ol StatusPr ofileSupported informs the user application that this WFMC
implementation fully supports al the Activity Control Status functions that comprise the Activity
Control Status Conformance Profile.

INTENDED USE

Implementation of this conformance profile allows a client application to select and manage
activity instances.

WMIEr r Ret Type VWM sAct i vi t yCont rol St at usProfi |l eSupport ed()

Argument Description
No Arguments

ERROR RETURN VALUE

WM TRUE - If Confornmance Profile is supported
WM FALSE - If Conformance Profile is not supported.

ACTIVITY CONTROL STATUS CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Activity Control Status Conformance Profile:

WM Connect

WM Disconnect

WM OpenActivitylnstanceStatesL st
WM FetchActivityl nstanceState

WM CloseActivitylnstanceStatesList
WM ChangeActivitylnstanceState

WM OpenActivitylnstancesList

WM FetchActivitylnstance
WMCloseActivitylnstancesList

WM GetActivitylnstance

WM OpenActivitylnstanceAttributesList
WM FetchActivitylnstanceAttribute
WM CloseActivityl nstanceAttributesList
WM GetActivitylnstanceAttributeValue
WMASssignActivitylnstanceAttribute

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:
All Audit Events related to state and attribute changes of Activity Instances, described by the Audit Data
Types ‘ Change Activity Instance State' and ‘ Assign Activity Instance Attributes

Version 2.0 Page 136 of 136
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

10.3.6 WMIsActivityAdminProfileSupported

NAME
WM I sActivityAdminPr ofileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WMI sActivityAdminPr ofileSupported informs the user application that this WFMC
implementation fully supports all the Activity Admin functions that comprise the Activity Admin
Conformance Profile.

INTENDED USE

Implementation of this conformance profile allows a client application to support global
manipulation of activity instances by an administrator. Contrast this set with the Activity Control
Status functions which work only onindividua activity instances.

WMIEr r Ret Type VWM sAct i vi t yAdmi nProfi | eSupport ed()

Argument Description
No Arguments

ERROR RETURN VALUE

WM TRUE - If Confornmance Profile is supported
WM FALSE - If Conformance Profile is not supported.

ACTIVITY ADMIN CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Activity Admin Conformance Profile:

WM Connect

WM Disconnect

WM ChangeA ctivityl nstancesState
WMASssignActivitylnstancesAttribute
WM OpenProcessDefinitionsList

WM FetchProcessDefinition

WM CloseProcessDefinitionsList

WM OpenActivitylnstanceStatesL ist
WM FetchActivityl nstanceState

WM CloseActivitylnstanceStatesList
WM OpenActivitylnstanceAttributesList
WM FetchActivitylnstanceAttribute
WM CloseActivityl nstanceAttributesList

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:
All Audit Events related to state and attribute changes of Activity Instances, described by the Audit Data
Types ‘ Change Activity Instance State' and ‘ Assign Activity Instance Attributes

Version 2.0 Page 137 of 137
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

10.3.7 WMIsEntityHandler ProfileSupported

NAME
WM I sEntityHandler ProfileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WMI sEntityHandler ProfileSupported informs the user application that this WFMC
implementation fully supports all the Entity Handler functions that comprise the Entity Handler
Conformance Profile.

INTENDED USE

Implementation of this conformance profile provides entity handler functionality to a client
application..

WMIEr r Ret Type VWM sEnt i t yHandl er Pr of i | eSupport ed()

Argument Description
No Arguments

ERROR RETURN VALUE

WM TRUE - If Confornmance Profile is supported
WM FALSE - If Conformance Profile is not supported.

ENTITY HANDLER CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Entity Handler Conformance Profile;

WM Connect

WM Disconnect

WM OpenProcessDefinitionsList
WM FetchProcessDefinition
WM CloseProcessDefinitionsList
WM CreateEntity

WMAddEntity

WM OpenEntitiesList

WM OpenOwnedEntitiesList
WM FetchEntity

WM CloseEntitiesList

WM RemoveEntity

WM DeleteEntity

10.3.8 WMIsAuditRecordProfileSupported

NAME
WM sAuditRecor dProfileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WM I sAuditRecor dPr ofileSupported informs the user application that this WFMC
implementation fully supports all the Audit Record capabilities for al other implemented
Conformance Profiles.

Version 2.0 Page 138 of 138
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

INTENDED USE
Implementation of this conformance profile provides audit record support for the other
conformance profiles.

WMTEr r Ret Type VWM sAudi t Recor dPr of i | eSupport ed()

Argument Description
No Arguments

ERROR RETURN VALUE

WM TRUE - If Confornmance Profile is supported
WM FALSE - If Conformance Profile is not supported.

AUDIT RECORD CONFORMANCE PROFILE FUNCTION

The following guidelines apply to the Audit Record Conformance Profile:

An implementation of any of the previous WAPI 2 Conformance Profiles may optionally include
implementation of the Audit Record requirement for that Profile’ s functions. In order to be conformant
with the Audit Record Specification for this interface, the vendor must implement Audit Records for each
implemented Profile. For example, if avendor has a conforming implementation of both the WorkList

Handler and the Process Control and Status profiles, they must implement Audit Records for both profiles
in order to achieve Audit Record Specification Conformance.

10.3.9 WM ToolAgentProfileSupported

NAME

WM T ool AgentPr ofileSuppor ted — Connects and supports different Tool Agentsto enable application
invokation

DESCRIPTION

The WM T ool AgentPr ofileSuppor ted informs the user application that this WFMC
implementation fully supports application invokation via the Tool Agent architecture model.

INTENDED USE

Implementation of this conformance profile provides an interface to integrate application control
mechanisms for workflow integration reasons.

WMTEr r Ret Type VWWMTool Agent Pr of i | eSupport ed()
Argument Description
No Argunents
ERROR RETURN VALUE

WM TRUE - If Conformance Profile is supported
WM FALSE - If Confornance Profile is not supported.

TOOL AGENT CONFORMANCE PROFILE FUNCTION
The following guidelines apply to the Tool Agent Conformance Profile:

Version 2.0 Page 139 of 139
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

An implementation of any of the previous WAPI 2 Conformance Profiles may optionally include
implementation of the Tool Agent requirement for that Profile' s functions. In order to be conformant with
the Tool Agent Specification for thisinterface, the vendor must implement Tool Agent interfaces, which
enable application invokation via the implemented Profile.

The following functions comprise the Tool Agent Conformance Profile:

WMTA Connect
WMTADisconnect
WMTAInvokeApplication
WMTARequestAppStatus
WMTATerminateApp

Version 2.0 Page 140 of 140
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Version 2.0 Page 141 of 141
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11. Appendix F: Workflow Definition Functions

The following describes a new set of functions that deals with definition of workflow models.

The first section describes an abstract machinery for handling of building blocks of workflow models -
abstract entities. Entity handling functions include creating and deleting entities as well as functionsto get
and set their attributes.

An entity can be whatever a specific vendor supports as building block for aworkflow definition; however,
abasic set of entity types that should always be supported (i.e., those corresponding to the Instances that
can be accessed viathe Application Client Interface) is defined in the documentation of Process Definition
I nterchange documentation (Interface-1) .

The middle piece of this chapter deals with connecting the abstract machinery of entities to the objects
already introduced in this specification: entities are owned either by an Enactment Service or by a particular
Process Definition; functions are described that enable editing of workflow objects in the context of an
Enactment Service or a concrete Process Definition.

Due to the generic architecture of Workflow Definition Functions, implementations have to obey the
semantical structure of the Process Definition Interchange Process Model as defined in the documentation
of Interface-1, Process Definition Interchange Interface [Process Definition Interchange Process Model,
WEfMC TC-1016] .

A list of attributes of Process Model Entitiesis provided with the documentation of the Process Definition
Interchange documents [Process Definition Attribute List, WfMC TC-1019].

11.1 Entity Handling functions

The following defines a set of generic functions which treat all objects maintained by an Enactment Service
as Entities, ignoring their specific semanticsin a Workflow context. All entities have an identifier, a name
and atype and other, type specific attributes. The ID is unique within a scope and remains constant from
session to session, and from client to client. The ID is used to allow entities to refer to each other in a
persistent way.

11.1.1 Entity Data Types

typedef struct

WMTEntityl D entity_id;
WM Text entity_type[NAME_STRI NG _SI ZE] ;
WMT Text entity_nane[NAME_STRI NG_SI ZE] ;
void * entity_private_data;
} WMIEntity;
Version 2.0 Page 142 of 142

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.1.2 WMCreateEntity

NAME
WM CreateEntity - Creates anew entity.
DESCRIPTION

Thisis how new entities are created that compose the workflow definition. The entity created is aworkflow
persistent entity. The structure for the new entity will be returned. The entity is scoped either by the context
of an enactment service or by another entity.

WMTEr r Ret Type WMCreat eEntity (
in WMIPSessi onHandl e psessi on_handl e,

in WMIPENntity scopi ng_entity,
in WMIName entity_cl ass,
in WWIName entity_nane,
out WMIPEntity entity)
Argument Description
psessi on_handl e Pointer to the structure with the session information created by a call to
WM Connect.
scoping_entity The entity that owns the new entity
entity_class The vendor defined entity class that isto be created. Specifies what class of
_ entity isto be created.
entity name The user defined name provided for this entity.
entity Pointer to a buffer which will receive the entity structure.
ERROR RETURN VALUE
Wk_SUCCESS

W | NVALI D_SCOPE
WV | NVALI D_CLASS
WW_READONLY CLASS

11.1.3 WMOpenEntitiesList

NAME

WM OpenEntitiesList - Specifies and opens the query to produce alist of all entities (owned by a specific
entity) that meet the selection criterion of the filter.

DESCRIPTION

This command directs the WFM Engine to open the query to provide alist of entities which are available to
a particular workflow participant, some of which may be modifiable by the participant. A typical usage for
this operation isto get alist of al entities of a specific entity_type within a certain process model.

This command will return a query handle for alist of entities that match the specified value for the attribute.
The command will also return, optionally, the total count of entities available. If the count is requested and
the implementation does not support it, the command will return apcount value of -1. If

pentity_def _filter iSNULL, then the function, with the corresponding fetch callswill return the list of
ALL entitiesin a given scope.

WMTEr r Ret Type WMOpenEntitiesList (
in WMIPSessi onHandl e psessi on_handl e,

in WMIPENntity scopi ng_entity,
in WMIPFi | ter pentity_def filter,
in WJTBool ean count _fl ag,
out WMTPQuer yHandl e pquery_handl e,
out WMTPI nt 32 pcount)
Version 2.0 Page 143 of 143

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.
scoping_entity The entity that represents the scope of entities to be included in the query result
pentity def filter Filter associated with the entities.

count _flag Boolean flag that indicates if the total count of entities should be returned.
pquery_handl e Pointer to a structure containing a unique query information.

Pcount Total number of entities that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | N\VALI D_FI LTER
W | NVALI D_SCOPE

REQUIREMENTS

No requirements are assumed to exist with regard to the type of process model. No requirements are
assumed to exist with regard to how workflow participant’s are identified within the WFM Engine.

RATIONALE FOR API

This command and the corresponding fetch calls allows aworkflow participant to retrieve the entities which
aworkflow participant is authorized to work on.

Version 2.0 Page 144 of 144
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.1.4 WMFetchEntity

NAME

WM FetchEntity - Returns the next entity from the set of entities that met the selection criterion stated in
the WM OpenEntitiesList call.

DESCRIPTION

This command directs the WFM Engine to provide one entity from the list of entities which are available to
a particular workflow participant, some of which may be modifiable by the participant. It is assumed that
not all processes in an organization may be modified by all workflow participants. This fetch function, as
well as all other fetch functionsin this API, will return subsequent items after every cal, one at atime. The
fetch process is complete when the function returns the error Wy NO MORE_DATA. The sort order in which the
items are returned is specific of the workflow engine servicing the call, no specific order should be

assumed.

WMTEr r Ret Type WMFet chEntity (
in WJTIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMIPENntityl D entity_id)

Argument Name Description

psessi on_handl e Pointer to a structure containing information about the context for this action.

pquery_handl e Identification of the specific query handle returned by the WM OpenEntitiesList
o query command.

entity_id Id of the next entity.

ERROR RETURN VALUE

VW _SUCCESS

W | NVALI D_SESSI ON_HANDLE
WM | NVALI D_ENTI TY

WV | N\VALI D_QUERY_HANDLE
WW_NO_NMORE_DATA

Version 2.0 Page 145 of 145
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3)

11.1.5 WMCloseEntitiesList

NAME
WM CloseEntitiesList - Closes the query of entities.

DESCRIPTION

WMTEr r Ret Type WMCl oseProcessModel Entiti esLi st (
in WJIPSessi onHandl e psessi on_handl e,

in WMIPQueryHandl e pquery_handl e)

01-July-98

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e I dentification of the specific query handle returned by the WM OpenEntitiesList

query command.

ERROR RETURN VALUE

WW_SUCCESS
WV | NVALI D_SESSI ON_HANDLE
W | NVALI D_QUERY_HANDLE

Version 2.0
Copyright © 1993, 1999, The Workflow Management Coalition

Page 146 of 146

Workflow Management Application Programming Interface (Interface 2& 3)

11.1.6 WM DeleteEntity

NAME
WM RemoveEntity - Deletes an entity.

DESCRIPTION

WMTEr r Ret Type WWVDel et eEntity (
in WMIPSessi onHandl e psession_handl e,
in WMIPENntity scopi ng_entity,

i WMIPENtityl D entity_id)

Argument Description

01-July-98

psessi on_handl e Pointer to the structure with the session information created by a call to

_ _ WM Connect.
scoping_entity The entity that owns the entity to be deleted
entity id Pointer to the unique id of the entity being deleted.

ERROR RETURN VALUE

WW_SUCCESS
W | NVALI D_SCOPE

Version 2.0
Copyright © 1993, 1999, The Workflow Management Coalition

Page 147 of 147

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2 Entity Attribute Manipulation

Every entity has attributes which contain specific information about the entity. These values are accessed
viathe WM GetEntityAttributeVaue and WM SetEntityAttributeV alue commands. Standard attributes will
be defined for each standard entity type, and there will be other attributes that vendors will wish to
implement specifically for their systems. In thisway the entities are extensible by vendors.

Some attributes contain scalar values, and others contain a collection of values. The multi valued attributes
are called “attribute lists” in this document. The valuesin an attribute list are accessed through the
following functions: WM OpenEntityAttributeValuelList, WM FetchEntityAttributeValue,
WMCloseEntityAttributeValueList. The open command returns a query handle which is used to fetch
subsequent values. Multi-valued attributes are updated though the use of WM ClearEntityAttributeList and
WMAddEntityAttributeValue.

Version 2.0 Page 148 of 148
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2.1 WM OpenEntityAttributesList

NAME

WM OpenEntityAttributesList - Specifies and opens the query to produce the list of attributes for a
specific entity that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of attributes for an entity. The command will also return,
optionally, the total count of attributes available. If the count is requested and the implementation does not
support it, the command will return apcount vaue of -1.

One of the uses of this AP, together with the corresponding fetch and close calls isto allow aworkflow
application to query the Workflow Engine for the available attributes that are defined for an entity, in order
to offer thislist to the application user.. If pentity_attr_filter iSNULL, then the function, with the
corresponding fetch calls will return the list of ALL attributes available for the entity.

WMTEr r Ret Type WMOpenEntityAttributesList (
in WJTIPSessi onHandl e psessi on_handl e,

in WMIPENntity scopi ng_entity,
in WMIEntity_Id entity_id,
in WMTPFi | ter pentity_attr_filter,
in WJTBool ean count _fl ag,
out WMTPQuer yHandl e pquery_handl e,
out WMTPI nt 32 pcount)
Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this
_ _ action.
scoping_entity The entity that scopes the entity
entity_id
pentity attr_filter Filter associated with the entity attributes.
count_flag Boolean flag that indicatesif the total count of entity attributes should
be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of attributes for this entity.
ERROR RETURN VALUE
Wk_SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | NVALI D_ENTI Y

Version 2.0 Page 149 of 149
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2.2 WMFetchEntityAttribute

NAME

WM FetchEntityAttribute - Returns the next entity attribute from the list of attributes that match the filter
criterion.

DESCRIPTION

This command returns an entity attribute. This fetch function will return subseguent entity attributes after
every call. Thefetch processis complete when the function returns the error Wy NO_MORE_DATA. The
function will return attribute name and its type and length; valid types are all WMT data types defined
below in this document plus

expressions of the form ListOf (Entity Class) where Entity Class isa string, identifying an entity class

supported by the Enactment Service

expressions of the form ListOf(Data_Type) where Data_Type is one of the basic WMT types
Valuesof attributes of type List are handled using the WMT...EntityAttributeValuesList operations
described below.

WMTEr r Ret Type WMFet chEntityAttribute (
in WJTIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMTPAttrName pattri bute_nane,
out WMTPInt 32 pattribute_type,
out WMIPI nt 32 pattribute_|l ength,

in WM nt32 buffer_size)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e I dentification of the specific query handle returned by the
_ WM OpenEntityAttributesList query command.

pattribute_name Pointer to the name of the attribute.

pattribute_type Pointer to the type of the attribute.

pattribute_length Pointer to the length of the attribute value.

buffer_size Size of the buffer.

ERROR RETURN VALUE

W SUCCESS

W | NVALI D_SESSI ON_HANDLE
WV | N\VALI D_QUERY_HANDLE
WW_NO_MORE_DATA

Version 2.0 Page 150 of 150
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3)

11.2.3 WMCloseEntityAttributesList

NAME
WM CloseEntityAttributesList - Closes the query for entity attributes.

DESCRIPTION

WMTEr r Ret Type WMCl oseEntityAttri butesList (
in WJIPSessi onHandl e psessi on_handl e,

in WMIPQueryHandl e pquery_handl e)

01-July-98

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e I dentification of the specific query handle returned by the

WM OpenEntityAttributesList query command.

ERROR RETURN VALUE

WW_SUCCESS
W | NVALI D_SESSI ON_HANDLE
WV | NVALI D_QUERY_HANDLE

Version 2.0
Copyright © 1993, 1999, The Workflow Management Coalition

Page 151 of 151

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2.4 WM GetEntityAttributeValue

NAME
WM GetEntityAttribute - Retrieves an attribute from an entity.
DESCRIPTION

Returns the value of the attribute named. See WM OpenEntityAttributeValuelist to get al of the elements
of amulti-valued attribute. The value of the attribute named is copied into the attribute_value buffer
specified. If the buffer is not large enough for the entire value, then only the part that fits will be placed in
the buffer, but no error will result. The attribute length will return the correct length of the attribute value,
not necessarily the amount of data returned.

WMTEr r Ret Type WMGet Enti t yAttri buteVal ue (
in WMIPSessi onHandl e psession_handl e,

in WMIPENntity scopi ng_entity,
in WMIPEntity entity_handl e,
in WMIPAttrNane attribute_nane,
out WMTI nt 32 attribute_type,
out WMTI nt 32 attribute_l ength,
out WMIPVoi d pattribute_val ue,
in WM nt 32 buf fer _si ze)
Argument Description
psessi on_handl e Pointer to the structure with the session information created by acall to
. WM Connect.
entity_handle Pointer to the entity structure from which the attribute is being retrieved.
attri bute_nare The name of the attribute from which to retrieve the value.
attribute_type Returns the type of the value that has been returned.
attribute_length Returns the length of the value in the attribute
pattribute_val ue A pointer to a buffer which will receive the value of the attribute.
buffer_size The size of the buffer. This value used by the API to restrict writing of datato
this length.
ERROR RETURN VALUE
WW_SUCCESS

WM _NOT_SI NGLE_VALUED

Version 2.0 Page 152 of 152
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2.5 WM OpenEntityAttributeValuelL ist

NAME

WM OpenEntityAttributeValuelist - opens a multi-valued attribute on an entity for retrieving each of the
valuesindividually. The type of avalue from the attribute isreturned. A query handleis returned to fetch
the individual values from. The count of itemsin the collection is optional.

If the name of a single valued attribute is given, an error will result.

DESCRIPTION

WMTEr r Ret Type WMOpenEnti t yAttri but eVal uelLi st (
in WMrPSessi onHandl e psession_handl e,

in WMIPEntity scopi ng_entity,
in WMIPENntity entity_handl e,
in WMIPAttrNane attri bute_nane,
out WMTI nt 32 attribute_type,
out WMIPQuer yHandl e query_handl e,
out WMIPI nt 32 pcount)
Argument Description
psessi on_handl e Pointer to the structure with the session information created by a call to
. WM Connect.
entity_handle Pointer to the struct representing the entity.
attri bute_nare The name of the multi-valued attribute to retrieve values from.
attribute_type The collection of values as assumed to be of the same type since a collection is

just amulti-valued attribute, so the collection_typeisreally the type of asingle
value in the collection.

query_handl e This query handle is used for WM FetchEntityCollectionV alue and
WM CloseEntityCollection
pcount The number of values held in this attribute. Thisisoptional. The value of

negative one (-1) will indicate that the value is not supported.

ERROR RETURN VALUE

WW_SUCCESS
WW_NOT_MULTI _VALUED

Version 2.0 Page 153 of 153
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2.6 WMFetchEntityAttributeValue

NAME
WM FetchEntityAttributeValue - Retrieves an attribute from an entity.

DESCRIPTION

WMTEr r Ret Type WVFet chEntityAttri buteVal ue(
in WMIPSessi onHandl e psession_handl e,
in WMrPQuer yHandl e pquery_handl e,
out WMTI nt 32 attribute_l ength,
out WMTPVoi d pattribute_val ue,

in WATInt32 buffer_size)

Argument Description
psessi on_handl e Pointer to the structure with the session information created by a call to
WM Connect.
pquery_handl e Pointer to the query structure created with WM OpenEntityCollection
attribute_|ength Returns the length of the value in the attribute
pattribute_val ue A pointer to a buffer which will receive the value of the attribute.
buffer_size The size of the buffer. This value used by the API to restrict writing of datato
thislength.

ERROR RETURN VALUE

WM_SUCCESS

Version 2.0 Page 154 of 154
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2.7 WM CloseEntityAttributeValueList

NAME

WM CloseEntityAttributeValuel ist - Closes the query handle used to retrieve a collection (a multi-valued
atribute).

DESCRIPTION

WMTEr r Ret Type WMCl oseEnti t yAttri but eVal ueLi st (
in WMIPSessi onHandl e psessi on_handl e,

in WMrPQuer yHandl e pquery_handl e)

Argument Description
psessi on_handl e Pointer to the structure with the session information created by a call to
WM Connect.
pquery_handl e Pointer to the query structure created with WM OpenEntityCollection
ERROR RETURN VALUE
WM _SUCCESS
Version 2.0 Page 155 of 155

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2.8 WMAssignEntityAttributeValue

NAME
WM AssignEntityAttributeValue - Set an attribute of an entity.

DESCRIPTION

WMTEr r Ret Type WMAssi gnEntityAttri buteVal ue (
in WMIPSessi onHandl e psession_handl e,

in WMIPENntity entity_handl e,
in WMIPAttrNane attribute_nane,
in WM nt32 attribute_type,
in WM nt32 attribute_l ength,
in WMrPText pattribute_val ue)
Argument Description
Psessi on_handl e Pointer to the structure with the session information created by a call to
. WM Connect.
entity_handle Pointer to the entity structure from which the attribute is being retrieved.
Attribute_name The name of the attribute to put the value into.
Attribute_type The type of the value.
Attribute_length The length of the value in the buffer.
Pattribute_val ue A pointer to abuffer which contains the value of the attribute.
ERROR RETURN VALUE
VW SUCCESS

VWM NOT_SI NGLE_VALUED

Version 2.0 Page 156 of 156
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2.9 WMClearEntityAttributelList

NAME
WM _ClearEntityAttributelList - Deletes al of the valuesin amulti-valued attribute.

DESCRIPTION

WMTEr r Ret Type WMCl ear Enti t yAttri but eLi st (
in WMrPSessi onHandl e psession_handl e,

in WMIPEntity entity_handl e,
in WMIPAttr Nanme attribute_nane
)
Argument Description
Psessi on_handl e Pointer to the structure with the session information created by a call to
_ WM Connect.
entity_handle Pointer to the entity structure from which the attribute is being erased.
Attribute_name The name of the attribute to be cleared out.
ERROR RETURN VALUE
W SUCCESS

WW_NOT_MULTI _VALUED

Version 2.0 Page 157 of 157
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.2.10 WMAddEntityAttributeValue

NAME
WM AddEntityAttributeValue - Add avalue to amulti-valued attribute of an entity.

DESCRIPTION

WMTEr r Ret Type WVAddENtityAttri buteVal ue(
in WMIPSessi onHandl e psession_handl e,
in WMIPEntity entity_handl e,
i WMTPAt tr Nanme attri but e_nane,
WMTI nt 32 attribute_type,
WMTI nt 32 attribute_l ength,
WMVTPVoi d pattribute_val ue

5151515

\,|...

Argument Description

Psessi on_handl e Pointer to the structure with the session information created by acall to
WM Connect.

enti t y_handl e Pointer to the entity structure from which the attribute is being retrieved.

Attr f bute_nane The name of the collection (multi-valued attribute) to add the valueinto.

Attribute_type The type of the value.

Attribute_l ength The length of the value in the buffer.

Pattribute_val ue A pointer to a buffer which contains the value of the attribute.

ERROR RETURN VALUE

WM SUCCESS

WW_NOT_MULTI _VALUED

Version 2.0 Page 158 of 158
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.3 Process Modelling Functions

The following set of functions supports creation and modification of aworkflow process model. A process
model is made up from building blocks called process definition entities in this specification. Examples for
process definition entities are Activity Definitions (the nodes of a process model, which become Activity
Instances when the process model is executed) and Transitions (the connections between Activity
Definitions). The generic entity handling functions defined above can be applied to modify the contents of
aprocess model. A standard set of such entities, which is obtained from the WM C Process Definition
Specification document is described in the next section

Version 2.0 Page 159 of 159
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.3.1 WMOpenWorkflowDefinition

NAME

WM OpenWor kflowDefinition - Prepares for editing of workflow definition entities (i.e., on the

Enactment Service scope level).

DESCRIPTION

This command tell the Enactment Service to prepare for editing of workflow definition entitiesit controls.
Thisisthe starting point for getting all of the entities that compose workflow definitions. This entity will
form the scoping entity for most of the requests for further entities controled by the Enactment Service.

WMTEr r Ret Type WMOpenWor kf | owDef i ni tion (

in WMTPSessi onHandl e psessi on_handl e,

in WM Text name(NAVE_STRI NG_SI ZE)

in WMT Text scope(NAVE_STRI NG_SI ZE)

out WMTPENt ity wor kf | ow_defi nition_handl e

‘

Argument

Psessi on_handl e
Nanme

Scope
Wor kf | ow_defi nition_handl e

ERROR RETURN VALUE
W/ SUCCESS

Version 2.0

Description

Pointer to the structure with the session information created by a call
to WM Connect.

Identifier of the editing context

Scope of editing context

Handle of the entity representing the workflow editing context. This
entity will be used as scoping entity for subsequent editing on entities
owned by the Enactment Service. The entity has type ‘workflow
definition’, name taken from the second input parameter, and no
additional attributes.

Page 160 of 160

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.3.2 WM CloseW or kflowDefinition

NAME

WM CloseWor kflowDefinition - Allows the system to free up any resources that are maintained to handle
requests for entities within theEnactment Service.

DESCRIPTION

WMTEr r Ret Type WMC oseWor kf | owDef i ni ti on(
in WMIPSessi onHandl e psessi on_handl e,

in WMIPENntity wor kf | ow_defi nition_handl e
)
Argument Description
Psessi on_handl e Pointer to the structure with the session information created by a call
o to WM Connect.
Vior kf | ow_def i ni tion_handl e Pointer to an entity structure which represents the contents of the

Enactnemtn Service. It isassumed that all entities within the scope of
this context become inaccessible once the workflow definition is
closed.

ERROR RETURN VALUE
WM _SUCCESS

Version 2.0 Page 161 of 161
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.3.3 WM CreateProcessDefinition

NAME
WM CreateProcessDefinition - creates a new process definition
DESCRIPTION

Creates an entity for anew empty process definition within the system. The empty process definition can
then have entities created within it.
WMTEr r Ret Type WMCr eat ePr ocessDefinition(

in WMIPSessi onHandl e psession_handl e,

out WMIrPProcDef I D pproc_def_id

)

Argument Description
Psessi on_handl e Pointer to the structure with the session information created by a call to
_ WM Connect.
pproc_def i d Pointer to the new process definition id for the process definition to create.

ERROR RETURN VALUE
W/ SUCCESS

Version 2.0 Page 162 of 162
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.3.4 WM DeleteProcessDefinition

NAME
WM DeletePr ocessDefinition - deletes a process definition
DESCRIPTION

DELETES a process definition from the scope defined by the current session.
WMTEr r Ret Type WWDel et ePr ocessDefinition(
in WMIPSessi onHandl e psession_handl e,

in WMIPProcDef| D pproc_def_id
)

Argument Description

Psessi on_handl e Pointer to the structure with the session information created by acall to
_ WM Connect.

pproc_def _id Pointer to the process definition to be deleted

ERROR RETURN VALUE
WW_SUCCESS

Version 2.0 Page 163 of 163
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.3.5 WM OpenProcessDefinition

NAME
WM OpenProcessDefinition - Prepares for editing of a process model.
DESCRIPTION

This command tell the Enactment Service to prepare for editing of the specified process model. Thisisthe
starting point for getting all of the entities that compose the process definition itself. This entity will form
the scoping entity for most of the requests for further entities within the process definition.

WMTEr r Ret Type WMOpenPr ocessDefinition (

in WMTPSessi onHandl e psessi on_handl e,
in WMTPPr ocDef i nition proc_definition
out. WMTPENtity proc_nodel _handl e
)
Argument Description
Psessi on_handl e Pointer to the structure with the session information created by acall to
WM Connect.
proc_definition Process Definition to be edited

proc_rodel _handle Handle of the entity representing the process model. This entity will be used as
scoping entity for subsequent editing on the process definition

ERROR RETURN VALUE
W _SUCCESS

Version 2.0 Page 164 of 164
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

11.3.6 WM CloseProcessDefinition

NAME

WM CloseProcessDefinition - Allows the system to free up any resources that are maintained to handle
requests for entities within the process definition.

DESCRIPTION

WMTEr r Ret Type WMCl osePr ocessDefinition(
in WMIPSessi onHandl e psessi on_handl e,

in WMIPEntity proc_nodel _handle
)

Argument Description
Psessi on_handl e Pointer to the structure with the session information created by a call to
WM Connect.

proc_rodel _handle pointer to an entity structure which represents the contents of the process
definition. It isassumed that all entities within the scope of this process
definition become inaccessible once the process definition is closed.

ERROR RETURN VALUE

WM SUCCESS

11.4 Standard Process Modelling Entity Types

The following describes the standard entity types that should be supported by every Workflow Engine and
their respective attributes (mandatory and optional); specific implementations may have additional types
and additional attributes for each type. The types are ProcessDefinition, ActivityDefinition, Transition,
Participant, Application and ProcessData. The entity types and their attributes are taken from the WfMC
specification of the Process Definition Interface, which describes the Workflow Process Definition
Language (WPDL); please refer to this document for further details. Some changes have been made to
adjust the attribute names used by WPDL to those used in the Workflow Client Application Interface
specification.

11.4.1 Additional Data Types
typedef struct

WMT Text name[NAVE_STRI NG _SI ZE] ;
} WUTNarre;

typedef struct

WWT Text dat e[NAVE_STRI NG S| ZE] ;
} WMTDat e;

typedef struct

WMTI nt 32 duration;
}WMTDur at i on;

typedef struct

VWM nt 32 cost ;
} WM Cost ;

typedef struct

WMT Text docunent ati on[1024] ;
}WMIDocunent at i on;

Version 2.0 Page 165 of 165
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

typedef struct

WMT Text expr essi on[256] ;
} WMTCondExpr essi on; /1 Condition expresson. To be refined using expression grammar

typedef struct

WMT Text expr essi on[256] ;
} WMTPar t Expr essi on; /1 Participant expresson. To be refined using expression granmmar

typedef struct

WMT Text expr essi on[256] ;
} WMTAppl i cati onSpec; /1 Application identification. To be refined...

Attribute structure used by ProcessData entity type to define complex data structures; attribute value might
hold ProcessDatal D if typeis COMPLEX, default value otherwise.

typedef struct

WM Text attribut e_name[NAME_STRI NG_SI ZE] ;

WMTI nt 32 attribute_type; /1 type of the attribute

WMTI nt 32 attribute_l ength; /1 length of the attribute val ue
WMTPText pattribute_val ue; /] pointer to the attribute val ue

}WMIAt tri but e;

11.4.1.1 WMAddTransition

NAME
WM AddTransition - Adds atransition definition to a process model.
DESCRIPTION

This command will return atransition definition entity owned by the process definition that is passed as
second parameter, connecting the activity definition entities passed as third and fourth parameter.

WMTEr r Ret Type WVADdTransi tion (
in WMIPSessi onHandl e psession_handl e,
in WMIPProcModel | D pproc_nodel _id,

in WMrPAct Def | D psour ce_act _def _i d,
in WMrPAct Def | D ptarget _act _def_id,
out WMIPEntity entity_handl e
)
Argument Description
psessi on_handl e Pointer to the structure with the session information created by a call to
WM Connect.
pproc_rodel _i d Pointer to the process model owning the new transition

psource_act_def_id pointer to the source activity definition of the transition
ptarget_act_def_id pointer to the target activity definition of the transition

entity_handl e Pointer to a buffer which will receive the structure which represents a transition
ERROR RETURN VALUE
W SUCCESS

11.4.1.2 WMAddProcessDataAttribute

NAME
WM AddProcessDataAttribute - Adds an attribute to the list of attributes that define the data structure.

Version 2.0 Page 166 of 166
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3)

DESCRIPTION

01-July-98

WMTEr r Ret Type WVADdProcessDat aAttri bute (

Argument Name

psessi on_handl e
pproc_nodel _id
pproc_data_id

pattri bute_nane
attribute_type
attribute_l ength
pattribute_val ue

in WJIPSessi onHandl e psessi on_handl e,
in WMIPProcMdl D pproc_nodel _id,

in WMIPProcDatal D pproc_data_id,

in WMTPAttrName pattribute_nane,

in WM nt32 attribute_type,

in WV nt32 attribute_l ength,

i WMIPText pattribute_val ue)

Description

Pointer to a structure containing information about the context for this action.
Pointer to a structure containing the process model entity ID.

Pointer to a structure containing the process data definition identification for

which the attribute will be assigned.

Pointer to the name of the attribute.

Type of the attribute.

Length of the attribute value.

Pointer to a buffer area provided by the client application where the attribute
value will be placed. Can be identifier of another process data entity.

ERROR RETURN VALUE

WM_SUCCESS

11.4.1.3 WMRemoveProcessDataAttribute

NAME

WM RemoveProcessDataAttribute - Removes an attribute from the list of attributes that define the data

structure.
DESCRIPTION

WMTEr r Ret Type WVRenoveProcessDataAttribute (

Argument Name

psessi on_handl e
pproc_nodel _id
pproc_data_id

pattri bute_nanme

in WJTIPSessi onHandl e psessi on_handl e,
WMTPPr ocModl D pproc_nodel _i d,

WMTPPr ocDat al D pproc_data_i d,

WMUTPAt t r Name pattri bute_nane)

1515

Description

Pointer to a structure containing information about the context for this action.
Pointer to a structure containing the process model entity ID.
Pointer to a structure containing the process data definition identification for

which the attribute will be assigned.
Pointer to the name of the attribute. Must be uique within the data structure.

ERROR RETURN VALUE

W _SUCCESS

Version 2.0

Page 167 of 167

Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

12. Appendix G: States

The following describes above a set of standard valid states for each of the major workflow objects defined
in this document. States are organized into several levels of granularity, lower level states refining higher-
level ones. An implementation of the Enactment Service might choose to support states on any level of
granularity, omit states and add additional states to the list defined below. A state for a particular workflow
object can be identified by its name only or by specifying its full nameincluding its super-state parents
using dot notation; for examples see the section on Process I nstance states below.

12.1 Process Instance States

Thetop level of states for a Process Instance distinguishes two states, open and closed. The open state has
two sub-states, running and notRunning; notRunning in turn has two sub-states, notStarted and suspended.
The following list describes the states in detail:
open - the Process Instance is being enacted
open.running - the Process Instance is executing
open.notRunning - the Process Instance is temporarily not executing
open.notRunning.notStarted - the Process I nstance has been created, but was not started yet
open.notRunning.suspended - execution of the Process Instance was temporarily suspended
closed - enactment of the Process Instance has been finished
closed.aborted - enactment of the Process Instance has been aborted by a user (see the specification of
WM AbortProcessi nstance for a definition of abortion in contrast to termination)
closed.terminated - enactment of the Process Instance has been terminated by a user (see the
specification of WM TerminateProcessi nstance for a definition of termination in contrast to abortion)
closed.completed - enactment of the Process I nstance has completed normally (i.e., was not forced by a
user)

An implementation might decide to support refinement of states to a certain level only or omit certain states;
valid sets of statesinclude for example:

open and closed
notRunning, running and closed
notSarted, running, completed and terminated

The following diagram shows the states and potential state-transitions; transitions are shown for the bottom-
level states only, transitions between the higher-level states can be deduced from that easily; e.g., thereisa
transition from open to closed or from notRunning to running, but no transition backwards in both cases.

Version 2.0 Page 168 of 168
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

running

.
N\

Sa

m

notStarted

B
/A///

suspended \L terminated
notRunning —>
open closed

~— completed I |

Here isashort discussion of the various state-transitions:
When a Process Instance is created it will takeitsintia state, which is open.notRunning.notStarted (or
just open, or open.notRunning depending on the level of granularity supported)
Transitions can be made from notRunning states to the running state; transitions from the running to the
notRunning super-state can be made to the suspended sub-state only.
When enactment of a Process Instance is finished, its state will take one of the flavours of the closed
state, depending on the way of ending enactment (normally completed, terminated or aborted). The
completed state can only be reached from the running state since it represents normal completion of the
Process Instance; the other closed sub-states are reached via the WM AbrtProcess| nstance or
WM TerminateProcess| nstance operations.
The closed stateis afinal state, i.e., thereis no transition from a closed state to an open state.

12.2 Activity Instance States

Thetop level of states for an Activity Instance distinguishes two states, open and closed. The open state has
three sub-states, running, notRunning; and suspended. The following list describes the states in detail :
- open - the Activity Instance is active
open.running - the Activity Instance is executing
open.notRunning - the Activity Instance is ready, but has not been started yet
open..suspended - execution of the Activity Instance was temporarily suspended
closed - enactment of the Activity Instance has been finished
closed.aborted - enactment of the Activity Instance has been aborted, probably due to abortion of the
owning Process I nstance (see the specification of WM AbortProcessinstance for a definition of abortion
in contrast to termination)
closed.terminated - enactment of the Activity Instance has been terminated , probably due to
termination of the owning process instance (see the specification of WM TerminateProcessnstance for a
definition of termination in contrast to abortion)
closed.completed - enactment of the Activity Instance has completed normally (i.e., was not forced by a
user or by a state change of its owning Process Instance)

The following diagram shows the states and potential state-transitions; transitions are shown for the bottom-
level states only, transitions between the higher-level states can be deduced from that easily.

Version 2.0 Page 169 of 169
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

running I\\\‘ completed I
\
A \\
\ A
—— = notRunning I » aborted I
\‘\

suspended _ terminated
I — I

open closed

e

Hereis ashort discussion of the various state-transitions:
When an Activity Instance is created it will takeitsintial state, which is open.notRunning
Transitions between the notRunning and the suspended states are in general initiated by the Enactment
Service, triggered by a corresponding state change of the owning Process Instance; they could aso be
triggered via the WM ChangeA ctivitylnstanceState operation.
Transitions between the notRunning and the running state might be initated by the Application Client
user viathe WM GetWorkitem operation, but thisis up to the specific Enactment Service; otherwise the
transition is either initiated by the Enactment Service or by the Application Client user viathe
WM ChangeWorkitemState or WM ChangeA ctivity State operation.
Transitions between the running and the suspended state are in general initiated by the Enactment
Service as aresult of a corresponding state change of the owning Process Instance; an Enactment service
might allow thistransition to be performed as aresult of the WM ChangeWorkitemState or via the
WM ChangeA ctivityl nstanceState operation also.
When enactment of an Activity Instanceisfinished it’s state will take one of the flavours of the closed
state, depending on the way of ending enactment (normally completed, terminated or aborted). The
completed state can only be reached from the running state since it represents normal completion of the
Activity Instance.
The closed stateis afinal state, i.e., thereis no transition from a closed state to an open state.

12.3 Workitem States

Thetop level of states for a Workitem distinguishes two states, open and closed. The open state has three
sub-states, running, notRunning; and suspended. The following list describes the states in detail:
- open - the Workitem is active
open.running - the Workitem is executing
open.notRunning - the Workitem is assigned to a participant, but has not been started yet
open..suspended - execution of the Workitem was temporarily suspended
closed - enactment of the Workitem has been finished
closed.aborted - enactment of the Workitem has been aborted, probably due to abortion of the owning
Process Instance (see the specification of WM AbortProcesslnstance for a definition of abortion in
contrast to termination)

Version 2.0 Page 170 of 170
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2& 3) 01-July-98

closed.terminated - enactment of the Workitem has been terminated , probably due to termination of the
owning process instance (see the specification of WM TerminateProcessl nstance for a definition of
termination in contrast to abortion)

closed.completed - enactment of the Workitem has completed normally (i.e., was not forced by a user or
by a state change of its owning Process Instance)

The following diagram shows the states and potential state-transitions; transitions are shown for the bottom-
level states only, transitions between the higher-level states can be deduced from that easily.

~— completed

running I
A

I

\
\ A
———® notRunning I » aborted
'S
suspended I\\\L terminated I
e

open closed

Hereis ashort discussion of the various state-transitions:
When an Workitem is created it will takeitsintia state, which is open.notRunning
Transitions between the notRunning and the suspended state are in general initiated by the Enactment
Service as aresult of a corresponding state change of the owning Process Instance; an Enactment service
might decide to allow this transition to be performed via the WM ChangeWorkitemState operation also.
Transitions between the notRunning and the running state might be initated by the Application Client
user viathe WM GetWorkitem operation, but thisis up to the specific Enactment Service; otherwise the
transition is either initiated by the Enactment Service or by the Application Client user viathe
WM ChangeWorkitemState operation or as aresult of a WM ChangeA ctivitylnstanceState on the
associated Activity Instance.
Transitions between the running and the suspended state are in general initiated by the Enactment
Service as aresult of a corresponding state change of the owning Process Instance; an Enactment service
might decide to allow this transition to be performed via the WM ChangeWorkitemState operation also.
When enactment of an Workitem isfinished it's state will take one of the flavours of the closed state,
depending on the way of ending enactment (normally completed, terminated or aborted). The
completed state can only be reached from the running state (via the WM Compl eteWorkitem operation)
since it represents normal completion of the Workitem.
The closed stateis afinal state, i.e., thereis no transition from a closed state to an open state.

Version 2.0 Page 171 of 171
Copyright © 1993, 1999, The Workflow Management Coalition

