
Copyright (C) 1993, 1999, The Workflow Management Coalition

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior written permission of the Workflow Management Coalition except that reproduction,
storage or transmission without permission is permitted if all copies of the publication (or portions thereof)
produced thereby contain a notice that the Workflow Management Coalition and its members are the
owners of the copyright therein.

This Specification has been authored by Workflow Management Coalition members.

The Workflow Management Coalition Specification

Workflow Management Application
Programming Interface (Interface 2&3)

Specification

Document Number WFMC-TC-1009

July-98
Version 2.0

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 2 of 2
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Coalition
Email: WFMC@wfmc.org

or Workgroup2@wfmc.org

or Workgroup3@wfmc.org

www: http://www.wfmc.org

The "WfMC" logo and "Workflow Management Coalition" name are service marks of the
Workflow Management Coalition.

Neither the Workflow Management Coalition nor any of its members make any warranty
of any kind whatsoever, express or implied, with respect to the Specification, including as
to non-infringement, merchantability or fitness for a particular purpose. This
Specification is provided “as is”.

First printing, November 1995
Second printing, version 1.1, May 1996
Third printing, version 2.0, July 1998

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 3 of 3
Copyright © 1993, 1999, The Workflow Management Coalition

0. CHANGE HISTORY ..7

1. PURPOSE...8

2. AUDIENCE..8

3. OVERVIEW...8

3.1 Application Interface Definition ..9
3.1.1 Purpose & Background..9

3.2 Design Philosophy ...10
3.3 Design Assumptions ..10
3.4 Design Objectives ..10
3.5 Defined Terms and Abbreviations ...10
3.6 Reference Documents ..10
3.7 Conformance..10
3.8 WAPI Naming Conventions ..10

4. WAPI DATA TYPES ..12

4.1 Basic WAPI Data Types ..12
4.2 Other WAPI Data Types..12
4.3 Attributes ...16

5. WAPI ERROR RETURN CODES...17

6. WAPI DESCRIPTIONS..19

6.1 WAPI Connection Functions ...19
6.1.1 WMConnect ...22

6.2 WAPI Process Control Functions ..23
6.2.1 WMOpenProcessDefinitionsList ..23
6.2.2 WMFetchProcessDefinition ...25
6.2.3 WMCloseProcessDefinitionsList..26
6.2.4 WMOpenProcessDefinitionStatesList ..27
6.2.5 WMFetchProcessDefinitionState ...28
6.2.6 WMCloseProcessDefinitionStatesList..29
6.2.7 WMChangeProcessDefinitionState..30
6.2.8 WMCreateProcessInstance..31
6.2.9 WMStartProcess ..32
6.2.10 WMTerminateProcessInstance ..33
6.2.11 WMOpenProcessInstanceStatesList...34
6.2.12 WMFetchProcessInstanceState..35
6.2.13 WMCloseProcessInstanceStatesList ..36
6.2.14 WMChangeProcessInstanceState ..37
6.2.15 WMOpenProcessInstanceAttributesList ..38
6.2.16 WMFetchProcessInstanceAttribute ...39
6.2.17 WMCloseProcessInstanceAttributesList ..40
6.2.18 WMGetProcessInstanceAttributeValue..41
6.2.19 WMAssignProcessInstanceAttribute ..42

6.3 WAPI Activity Control Functions..44
6.3.1 WMOpenActivityInstanceStatesList ...44
6.3.2 WMFetchActivityInstanceState ..45
6.3.3 WMCloseActivityInstanceStatesList...46
6.3.4 WMChangeActivityInstanceState...47
6.3.5 WMOpenActivityInstanceAttributesList ...48

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 4 of 4
Copyright © 1993, 1999, The Workflow Management Coalition

6.3.6 WMFetchActivityInstanceAttribute..49
6.3.7 WMCloseActivityInstanceAttributesList...50
6.3.8 WMGetActivityInstanceAttributeValue ..51
6.3.9 WMAssignActivityInstanceAttribute ..52

6.4 WAPI Process Status Functions...53
6.4.1 WMOpenProcessInstancesList...54
6.4.2 WMFetchProcessInstance..55
6.4.3 WMCloseProcessInstancesList ..56
6.4.4 WMGetProcessInstance...57

6.5 WAPI Activity Status Functions ..58
6.5.1 WMOpenActivityInstancesList ...59
6.5.2 WMFetchActivityInstance ..60
6.5.3 WMCloseActivityInstancesList...61
6.5.4 WMGetActivityInstance ...62

6.6 WAPI Worklist Functions..63
6.6.1 WMOpenWorkList..64
6.6.2 WMFetchWorkItem..65
6.6.3 WMCloseWorkList ...66
6.6.4 WMGetWorkItem ...67
6.6.5 WMCompleteWorkItem..68
6.6.6 WMOpenWorkitemStatesList ...68
6.6.7 WMFetchWorkitemState ..70
6.6.8 WMCloseWorkitemStatesList ...71
6.6.9 WMChangeWorkitemState ...72
6.6.10 WMReassignWorkItem...73
6.6.11 WMOpenWorkItemAttributesList ...74
6.6.12 WMFetchWorkItemAttribute..75
6.6.13 WMCloseWorkItemAttributesList...76
6.6.14 WMGetWorkItemAttributeValue ..77
6.6.15 WMAssignWorkItemAttribute ..78

6.7 WAPI Administration Functions..79
6.7.1 WMChangeProcessInstancesState...79
6.7.2 WMChangeActivityInstancesState ...81
6.7.3 WMTerminateProcessInstances...82
6.7.4 WMAssignProcessInstancesAttribute ..83
6.7.5 Event Code: WMAssignedProcessInstanceAttributes ...83
6.7.5 WMAssignActivityInstancesAttribute...84
6.7.6 WMAbortProcessInstances ..85
6.7.7 WMAbortProcessInstance..86

6.8 WAPI Application Invocation Functions...86
6.8.1 WMTAConnect() & WMTADisconnect()..87
6.8.2 WMTAInvokeApplication() ..88
6.8.3 WMTARequestAppStatus()...89
6.8.4 WMTATerminateApp()...90

7. APPENDIX A: FUTURE WORK ..92

7.1 Additional API Areas...92
7.1.1 WFM Data API calls..92
7.1.2 Ad hoc activities...92
7.1.3 Administration and Maintenance...92
7.1.4 Names and Roles..92

7.2 Additional Issues..92
7.2.1 Error reporting and control...92
7.2.2 Synchpoint processing ...92
7.2.3 Security ..93

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 5 of 5
Copyright © 1993, 1999, The Workflow Management Coalition

7.2.4 Locking ..93
7.2.5 Process Integrity ..93

8. APPENDIX B: OBJECT BINDINGS ..94

8.1 Abstract Object Definition...94
8.1.1 Mapping WAPI to the OLE and IDL Bindings ..95

8.2 OLE Automation Binding..96
8.2.1 Expressing WAPI2 as an OLE Automation Interface ..96
8.2.2 Attributes..99
8.2.3 Server...100
8.2.4 Filter ..104
8.2.5 Process Definition..104
8.2.6 Process Instance ..108
8.2.7 Activity Definition ..109
8.2.8 Activity Instance...110
8.2.9 WorkItem..111
8.2.10 Transition Definition..112
8.2.11 Participant Definition ..112
8.2.12 Application Definition ...113
8.2.13 Process Data Definition...113
8.2.14 Attribute ...113

8.3 OMG IDL Binding...114
8.3.1 The Workflow Facility Base Module..114
8.3.2 Workflow Application Client Server Interface...116
8.3.3 The Process Definition Module ...120
8.3.4 Relationship to WfMC Standards...125

9. APPENDIX D: AUDIT DATA ...126

9.1 Auditing Process Definitions ...126
9.2 Auditing Process Instances ..126
9.3 Auditing Activity Instances..127
9.4 Auditing Workitems...127

10. APPENDIX E: CONFORMANCE PROFILES..128

10.1 Philosophy and Approach ..128
10.2 Practice and Policy ..128
10.3 The WAPI Conformance Profiles and Functions...129

10.3.1 WMIsWorkListHandlerProfileSupported...129
10.3.2 WMIsProcessControlStatusProfileSupported..131
10.3.3 WMIsProcessDefinitionProfileSupported..133
10.3.4 WMIsProcessAdminProfileSupported ...134
10.3.5 WMIsActivityControlStatusProfileSupported ..136
10.3.6 WMIsActivityAdminProfileSupported..137
10.3.7 WMIsEntityHandlerProfileSupported..138
10.3.8 WMIsAuditRecordProfileSupported ..138
10.3.9 WMToolAgentProfileSupported...139

11. APPENDIX F: WORKFLOW DEFINITION FUNCTIONS...142

11.1 Entity Handling functions ..142
11.1.1 Entity Data Types ..142
11.1.2 WMCreateEntity ..143
11.1.3 WMOpenEntitiesList ..143
11.1.4 WMFetchEntity ..145
11.1.5 WMCloseEntitiesList..146
11.1.6 WMDeleteEntity...147

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 6 of 6
Copyright © 1993, 1999, The Workflow Management Coalition

11.2 Entity Attribute Manipulation ..148
11.2.1 WMOpenEntityAttributesList ...149
11.2.2 WMFetchEntityAttribute ..150
11.2.3 WMCloseEntityAttributesList...151
11.2.4 WMGetEntityAttributeValue ..152
11.2.5 WMOpenEntityAttributeValueList ...153
11.2.6 WMFetchEntityAttributeValue...154
11.2.7 WMCloseEntityAttributeValueList...155
11.2.8 WMAssignEntityAttributeValue ...156
11.2.9 WMClearEntityAttributeList ..157
11.2.10 WMAddEntityAttributeValue ...158

11.3 Process Modelling Functions ...159
11.3.1 WMOpenWorkflowDefinition...160
11.3.2 WMCloseWorkflowDefinition ..161
11.3.3 WMCreateProcessDefinition ...162
11.3.4 WMDeleteProcessDefinition..163
11.3.5 WMOpenProcessDefinition ...164
11.3.6 WMCloseProcessDefinition ...165

11.4 Standard Process Modelling Entity Types ...165
11.4.1 Additional Data Types ...165

12. APPENDIX G: STATES ...168

12.1 Process Instance States ..168
12.2 Activity Instance States..169
12.3 Workitem States...170

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 7 of 7
Copyright © 1993, 1999, The Workflow Management Coalition

0. Change History
Version 1.0
• Intitial version
Version 1.1
• Consistent handling of output parameters as pointers
• Added attributes for WMTProcessDefinition
• Editorial enhancements
Version 1.2
• Added Abstract Object Model
• Added OLE Binding
• Added OMG IDL Binding
Version 2.0 (Beta)
• Added Process Definition functions
• Added States
• Added references to Audit Data
• Added Conformance Specification
Version 2.0 (Beta)
• Added Application Interface Definition
• Added Application Interface functions
Version 2.0e (Beta)
• Added Conformance Profile for WFToolAgent

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 8 of 8
Copyright © 1993, 1999, The Workflow Management Coalition

1. Purpose
The purpose of this document is to specify standard workflow management Application Programming
Interfaces (API) which can be supported by WFM products. These API calls provide for a consistent
method of access to WFM functions in cross-product WFM Engines. The API set is named Workflow
Application Programming Interfaces (WAPI).

This document defines the API specifications of the Workflow Management Coalition for building
workflow-enabled applications (Interface 1,2 and 3 in the Workflow Reference Model).

This document is directly associated to the documents:

• Workflow Management Coalition Glossary
• Workflow Management Coalition Interface 2 WAPI Naming Conventions

The three documents constitute the complete specification.

2. Audience
The intended audience of this document includes all participants in the workflow industry. Comments
should be addressed to the Workflow Management Coalition.

3. Overview
The support of these interfaces in WFM products allow the implementation of front-end applications which
need to access WFM Engine functions (Workflow services). Such implementations might be written by
WFM exploiters or ISVs. Implementation of these API calls are also intended to allow the workflow
applications to be adjusted to operate with different WFM Engines using this common API interface.

These API calls should allow a WFM exploiter to have a single end user interface and functions set
regardless of the number of WFM products existing in an installation. WAPI calls may be implemented in a
number of languages. The first Coalition specification will be for the ‘C’ language. The API operates as
CALLS. No assumption is may regarding the underlying implementation of the CALLS in a particular
WFM product implementation. The WAPI calls are for use at run-time. That is, when processes are
executing or are to be executed. They would normally be used by workflow applications (e.g. worklist
handlers, cooperating applications) but may also be used by a WFM Engine when it wishes to interact with
another WFM product within the context of the API functions.

Through its set of functions, the WAPI provides a set of workflow services that a Workflow Enactment
Service provides. The WAPI does not assume any specific user interface, but rather it specifically assumes
that the user interface of the workflow enabled application, that uses these services, provides its own user
interface, that depends solely on the application development environment facilities where it is
implemented.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 9 of 9
Copyright © 1993, 1999, The Workflow Management Coalition

The WFM Engine functions can broadly be classified in the following areas:

• WAPI Connection Functions
• WAPI Workflow Definition Functions
• WAPI Process Control Functions
• WAPI Activity Control Functions
• WAPI Process Status Functions
• WAPI Activity Status Functions
• WAPI Worklist Functions
• WAPI Administration Functions

3.1 Application Interface Definition

Introducing a Workflow Management System always implies that at least the existing IT environment has to
be integrated, or better “workflow enabled”. Additionally, this interface grants a certain degree of protection
on the already installed software systems.
The WfMC’s interface to invoke applications does not define a direct application control mechanism.
Today, the customers and the vendors are confronted with several different operating systems and
application communication mechanisms. Therefore, Workflow Management Systems need an interface to
specific application drivers. With the definition of these drivers to invoke and control applications, the
Coalition offers an interface which enables a standardized protocol between workflow products and any
other software systems.

Currently, a variety of Workflow Management Tools support specialized mechanisms to integrate
applications and to exchange information. While all these mechanisms are mostly individually implemented
for specific customer requirements, system integration companies and third party vendors have to re-
implement these mechanisms, if they intend to use another Workflow Management tool at the same site.
Consequently, their interest in supporting the generation of such an interface is, indeed, very high, as it
would definitely improve their daily work. It might appear very simple to “workflow enable” common
applications, nevertheless, workflow environments typically include a series of different specialized
applications, which run in heterogeneous environments.
Workflow Management Systems as well as integration platforms are required by the market and require a
generalized and standardized application interface.

3.1.1 Purpose & Background

The “Invoking Applications Interface” defines an interface mechanism between Workflow Management
Systems and any other application, but it, however, differentiates itself from the other Coalition interface
definitions. Invoking an application is not a workflow specific functionality, but a Workflow System would
not make much sense without this functionality.
Therefore, this interface addresses workflow system vendors as well as any third party software vendor.
Based on different communication technologies the so-called “Tool Agents” can handle the application
control and information exchange. These Tool Agents represent at least one specific invocation technology.
E.g. while one Tool Agent supports DDE commands, others can communicate based on protocols like OLE
or CORBA or any other concept.
The technology to interact between a Tool Agent and a corresponding application depends on the
underlying architecture and on application - specific interfaces, which have to be managed under control of
the Tool Agent itself. The suggested interface defines the way a Tool Agent can be used by a workflow
application, e.g. a worklist handler or the workflow engine. Finally, the purpose of Tool Agents can be
compared with the purpose of standardized software components.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 10 of 10
Copyright © 1993, 1999, The Workflow Management Coalition

3.2 Design Philosophy

There are a number of design assumptions and constraints that provide a framework or philosophy for the
definition of this specification.

3.3 Design Assumptions

Incremental Set of Functions. It is assumed that as the WFM technology evolves, likewise the
specifications defined in this document will evolve and will have additions in subsequent versions
of this document.

• Strings are defined with buffer sizes allocated in bytes. Strings are assumed to be zero terminated.
• The workflow engine may have security restrictions that may cause an error to be returned to a user for

some of the API calls.
• The specific calls to change state have to be supported by all vendors. The generic state changes are

reserved for vendor specific states. In the future, it is expected that a common set of states will evolve.
• Each process definition must have a unique ID within an administrative scope.
• Each process instance must have a unique ID within an administrative scope.
• Each activity instance must have a unique ID within a process instance.
• Each work item must have a unique ID within a process instance.
• Process Instance ID is unique to the workflow engines from which it is available. It is the

responsibility of the workflow engine to ensure a unique identifier within this scope.

3.4 Design Objectives

Ease of Implementation. The API specification must be easy to implement by a wide range of
vendors. This also implies that the specification will be able to be implemented by
multiple vendors in a reasonably short period of time.

3.5 Defined Terms and Abbreviations

The terms used in this document are defined in the WFM Coalition Glossary.

3.6 Reference Documents

The following documents are associated with this document and should be used as a reference.
• WFM Coalition Reference Model
• WFM Coalition Glossary
• WFM Coalition WAPI Naming Conventions

3.7 Conformance

A vendor can not claim conformance to this or any other WfMC specification unless specifically authorized
to make that claim by the WfMC. The WfMC grants this permission only upon the verification of the
particular vendor’s implementation of the published specification, according to the conformance
requirements and applicable test procedures defined by the WfMC.

3.8 WAPI Naming Conventions

The Working group has proposed a set of standards for handling the naming conventions of the different
implementation of the Workflow API. These naming conventions standards are described in the document

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 11 of 11
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Coalition Interface 2 WAPI Naming Conventions (Document Number WFMC-TC-
1013).

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 12 of 12
Copyright © 1993, 1999, The Workflow Management Coalition

4. WAPI Data Types
This section describes the WAPI data types. These data types are used in the WAPI calls as input and
output parameters.

4.1 Basic WAPI Data Types

This subsection contains definitions of the basic Workflow Management types that are operating system or
platform dependent.

typedef char WMTInt8;
typedef short WMTInt16;
typedef long WMTInt32;
typedef unsigned char WMTUInt8;
typedef unsigned short WMTUInt16;
typedef unsigned long WMTUInt32;

typedef WMTInt8 WMTText;
typedef WMTText *WMTPText;
typedef WMTInt8 *WMTPInt8;
typedef WMTInt16 *WMTPInt16;
typedef WMTInt32 *WMTPInt32;

typedef WMTInt8 WMTBoolean;
typedef WMTUInt8 *WMTPointer;
typedef WMTText *WMTPPrivate;

#define WMNULL ((WMTPointer)0)
#define WMFalse 0
#define WMTrue (!WMFalse)

4.2 Other WAPI Data Types

This subsection contains definitions of the Workflow Management types that are specific to the structures
and objects defined in this specification.

Strings in this specification, are assumed to be zero terminated. The maximum string length for names,
keywords and identifiers in this specification is 63 characters hosted in a 64 byte text array. The following
macro definition specifies this typical size:

#define NAME_STRING_SIZE 64

All strings in this specification are defined as text arrays, such as:

WMTText user_identification[NAME_STRING_SIZE];

Given this, in the example above the string can include up to a maximum of 63 real characters.

In some other cases, the fixed size structures for data reference and unique ids are also defined through the
following macro definitions:

#define UNIQUE_ID_SIZE 64

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 13 of 13
Copyright © 1993, 1999, The Workflow Management Coalition

All WAPI function calls have a uniform error return datatype:

typedef struct
{

WMTInt16 main_code;
WMTInt16 sub_code;

} WMTErrRetType;

This data type is shared among all API calls. All other data types are shown along with the WAPI
description for each individual call.

This error return datatype is a Int32 word that has two Int16 elements for error returns. The main_code
element contains the main error return code, while the sub_code element contains a code that further
specifies the nature of the error. For example, the main_code error code WM_INVALID_PROCESS_INSTANCE
(see Error Return Codes below), would include in its sub_code set of codes a further, more detailed reason
why the process instance is invalid.

This specification assumes that the Coalition will specify a subset of the main_code codes, leaving for
vendor specific implementation the remaining main_code codes and the set of sub_code codes to provide
extensibility and specialization of error codes.

typedef struct
{

WMTText user_identification[NAME_STRING_SIZE];
// The identification of the workflow

participant on whose behalf the Workflow
Application will be operating. The
value specified may represent a human, a
device, etc. This identification is
normally used for security checking,
accounting, etc.

WMTText password[NAME_STRING_SIZE];
WMTText engine_name[NAME_STRING_SIZE];

// The identification of the WFM Engine to
whom the subsequent API calls are to be
directed. This information would not be
required for some WFM products in the
normal case. However, it is required for
those Workflow Applications which
interact with multiple WFM Engines. This
would be a symbolic name which is
resolved through a lookup facility.

WMTText scope[NAME_STRING_SIZE];
// Identification of scope for the

application. If scope is not relevant,
then this field would be empty and
ignored.

}WMTConnectInfo;

typedef WMTConnectInfo *WMTPConnectInfo;

typedef struct
{

WMTUInt32 session_id; // locally unique ID for the session
WMTPPrivate pprivate; // pointer to a private structure containing

vendor specific information.
}WMTSessionHandle;

typedef WMTSessionHandle *WMTPSessionHandle;

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 14 of 14
Copyright © 1993, 1999, The Workflow Management Coalition

typedef struct
{

WMTInt32 filter_type; // Includes basic types and SQL String
WMTInt32 filter_length; // Length (in bytes) of value
WMTText attribute_name [NAME_STRING_SIZE]
WMTUInt32 comparison; // one of: <, >, =, !=, <=, <=
WMTPText filter_string;

}WMTFilter;

typedef WMTFilter *WMTPFilter;

// The first 255 filter types will be reserved. These will be used for filtering on
attributes of process control data and process relevant data. The specific code values
for these codes are included in the WFM Coalition Interface 2 WAPI Naming Conventions
specification document.

// In this specification there are two types of filters. One type is useful for
comparisons with and between attribute values. In this case, the filter_string
includes the attribute value that the attribute is compared against. The second type
is a more general mechanism in which the filter_string represents the whole argument
(typically a full SQL argument). If filter_type is a SQL string, the filter_string
will point to a SQL clause with the syntax of a WHERE clause in the SQL 92 standard
language specification.

typedef struct
{

WMTUInt32 query_handle;
}WMTQueryHandle;

typedef WMTQueryHandle *WMTPQueryHandle;

typedef struct
{

WMTText wf_participant[NAME_STRING_SIZE];
}WMTWflParticipant;

typedef WMTWflParticipant *WMTPWflParticipant;

typedef struct
{

WMTText proc_def_id[UNIQUE_ID_SIZE];
}WMTProcDefID;

typedef WMTProcDefID *WMTPProcDefID;

typedef struct
{

WMTText activity_id[NAME_STRING_SIZE];
}WMTActivityID;

typedef WMTActivityID *WMTPActivityID;

typedef struct
{

WMTText proc_def_state[NAME_STRING_SIZE];
} WMTProcDefState;

typedef WMTProcDefState *WMTPProcDefState; // pointer to a 63-byte string

typedef struct
{

// This is the minimum list of elements at this time. Future versions to provide
extensibility for this structure.

WMTText process_name[NAME_STRING_SIZE];
WMTProcDefID proc_def_id;
WMTProcDefState state;

} WMTProcDef;

typedef WMTProcDef *WMTPProcDef;

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 15 of 15
Copyright © 1993, 1999, The Workflow Management Coalition

typedef struct
{

WMTText proc_inst_id[UNIQUE_ID_SIZE];
}WMTProcInstID;

typedef WMTProcInstID *WMTPProcInstID;

typedef struct
{

WMTText proc_inst_state[NAME_STRING_SIZE];
} WMTProcInstState;

typedef WMTProcInstState *WMTPProcInstState; // pointer to a 63-byte string

typedef struct
{

// This is the minimum list of elements at this time. Future versions to provide
extensibility for this structure.

WMTText process_name[NAME_STRING_SIZE];
WMTProcInstID proc_inst_id;
WMTProcDefID proc_def_id;
WMTProcInstState state;
WMTInt32 priority;
WMTWflParticipant proc_participants[20];

//up to 20 63 character long participant identifiers
} WMTProcInst;

typedef WMTProcInst *WMTPProcInst;

typedef struct
{

WMTText activity_inst_id[UNIQUE_ID_SIZE];
}WMTActivityInstID;

typedef WMTActivityInstID *WMTPActivityInstID;

typedef struct
{

WMTText activity_inst_state[NAME_STRING_SIZE];
} WMTActivityInstState;

typedef WMTActivityInstState *WMTPActivityInstState;

typedef struct
{

// This is the minimum list of elements at this time. Future versions to provide
extensibility for this structure.

WMTText activity_name[NAME_STRING_SIZE];
WMTActivityInstID activity_inst_id;
WMTProcInstID proc_inst_id;
WMTActivityInstState state;
WMTInt32 priority;
WMTWflParticipant activity_participants[10];

//up to 10 63 character long participant identifiers
} WMTActivityInst;

typedef WMTActivityInst *WMTPActivityInst;

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 16 of 16
Copyright © 1993, 1999, The Workflow Management Coalition

typedef struct
{

WMTText work_item_id[UNIQUE_ID_SIZE];
}WMTWorkItemID;

typedef WMTWorkItemID *WMTPWorkItemID;

typedef struct
{

// This is the minimum list of elements at this time. Future versions to provide
extensibility for this structure.

WMTText workitem_name[NAME_STRING_SIZE];
WMTWorkItemID workitem_id;
WMTActivityInstID activity_inst_id;
WMTProcInstID proc_inst_id;
WMTInt32 priority;
WMTWflParticipant participant;

} WMTWorkItem;

typedef WMTWorkItem *WMTPWorkItem;

typedef struct
{

WMTText attribute_name[NAME_STRING_SIZE];
WMTInt32 attribute_type; // type of the attribute
WMTInt32 attribute_length; // length of the attribute value
WMTPText pattribute_value; // pointer to the attribute value

} WMTAttribute;

typedef WMTAttribute *WMTPAttribute;

typedef struct
{

WMTInt32 attribute_number;
WMTPAttribute pattribute;
WMTNextAttr *WMTAttributeList

} WMTAttributeList;

typedef WMTAttributeList *WMTPAttributeList;

4.3 Attributes

This specification does not make any assumption about the binding that workflow applications will make of
retrieved attributes and their values. It is up to the specific application to manage this binding. The API
manages attributes as a set of four elements:

WMTText attribute_name[NAME_STRING_SIZE];
WMTInt32 attribute_type; // type of the attribute
WMTInt32 attribute_length; // length of the attribute value
WMTPText pattribute_value; // pointer to the attribute value

All API calls in this specification that deal with attributes, take each individual element as separate
parameter for the call.

The following type definitions are used for attribute name:

typedef WMTText WMTAttrName[NAME_STRING_SIZE];
typedef WMTAttrName *WMTPAttrName;

These attributes are of the kind called Process Control and Process Relevant Data. Some attributes of
process instances, activity instances and work items could be: priority, state, start_time, description,
instance_name, workflow_participant.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 17 of 17
Copyright © 1993, 1999, The Workflow Management Coalition

5. WAPI Error Return Codes
This section describes the minimal set of WAPI error return codes. These error codes correspond to the
main_code element of the WMTErrRetType datatype defined above. The specific code values for these
codes are included in the WFM Coalition WAPI Naming Conventions specification document.

The minimal set of main_code error return codes are:

WM_SUCCESS

Indicates that the API call completed successfully.

WM_CONNECT_FAILED

Indicates that the WMConnect call failed.

WM_INVALID_PROCESS_DEFINITION

Indicates that the process definition ID that was passed as parameter to an API call was
not valid, or it was not recognized by the servicing workflow engine.

WM_INVALID_ACTIVITY_NAME

Indicates that the activity name that was passed as parameter to an API call was not valid,
or was not recognized by the servicing workflow engine.

WM_INVALID_PROCESS_INSTANCE

Indicates that the process instance ID that was passed as parameter to an API call was not
valid, or was not recognized by the servicing workflow engine.

WM_INVALID_ACTIVITY_INSTANCE

Indicates that the process instance ID that was passed as parameter to an API call was not
valid, or was not recognized by the servicing workflow engine.

WM_INVALID_WORKITEM

Indicates that the work item ID that was passed as parameter to an API call was not valid,
or was not recognized by the servicing workflow engine.

WM_INVALID_ATTRIBUTE

Indicates that the attribute that was passed as parameter to an API call was not valid, or
was not recognized by the servicing workflow engine.

WM_ATTRIBUTE_ASSIGNMENT_FAILED

Indicates that the workflow engine was not able to complete the attribute assignment
requested.

WM_INVALID_STATE

Indicates that a state was not valid, or was not recognized by the servicing workflow
engine.

WM_TRANSITION_NOT_ALLOWED

Indicates that the state transition requested was not valid, or was not recognized by the
servicing workflow engine.

WM_INVALID_SESSION_HANDLE

Indicates that the session ID that was passed as parameter to an API call was not valid, or
was not recognized by the servicing workflow engine.

WM_INVALID_QUERY_HANDLE

Indicates that the query handle ID that was passed as parameter to an API call was not
valid, or was not recognized by the servicing workflow engine.

WM_INVALID_SOURCE_USER

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 18 of 18
Copyright © 1993, 1999, The Workflow Management Coalition

Indicates that the participant “source user” that was passed as parameter to an API call
was not valid, or was not recognized by the servicing workflow engine.

WM_INVALID_TARGET_USER

Indicates that the participant “target user” that was passed as parameter to an API call was
not valid, or was not recognized by the servicing workflow engine.

WM_INVALID_FILTER

Indicates that the filter structure or values that were passed as parameter to an API call
was not valid, or was not recognized by the servicing workflow engine.

WM_LOCKED

Reserved for situations in which the servicing workflow engine implements “locking” of
workflow entities (process definitions, process instances, activities, work items, etc.) to
indicate that the entity is locked at the moment in which its access is requested.

WM_NOT_LOCKED

Reserved for situations in which the servicing workflow engine implements “locking” of
workflow entities (process definitions, process instances, activities, work items, etc.) to
indicate that the entity is not locked at the moment in which its access is requested.

WM_NO_MORE_DATA

Indicates that a fetch query call has reached the end of the list of valid entities to be
returned. This error return code is used to implement queries of lists of workflow entities,
it indicates that all the entities of the list that matched the selection criterion have already
been returned.

WM_INSUFFICIENT_BUFFER_SIZE

Indicates that the buffer size that was passed to an API call is insufficient to hold the data
that it is supposed to receive.

WM_APPLICATION_BUSY
Indicates that the corresponding application is currently busy and cannot
return a status of work progress.

WM_INVALID_APPLICATION
Indicates that an invalid application has been requested by the calling
interface.

WM_INVALID_WORK_ITEM
Indicates that an invalid work item has been referenced to by the calling
interface.

WM_APPLICATION_NOT_STARTED
Indicates that the requested application did not start up successfully.

WM_APPLICATION_NOT_DEFINED
Indicates that the application is not installed or configured.

WM_APPLICATION_NOT STOPPED
Indicates that the corresponding application did not stop orderly.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 19 of 19
Copyright © 1993, 1999, The Workflow Management Coalition

6. WAPI Descriptions
This section describes the WAPI calls. They are grouped as follows:

• WAPI Connection Functions
• WAPI Process Control Functions
• WAPI Activity Control Functions
• WAPI Process Status Functions
• WAPI Activity Status Functions
• WAPI Worklist Functions
• WAPI Administration Functions
• WAPI Application Invocation Functions

The specification of the WAPI calls that follows includes a specification of parameters with
indications of the direction of data passing:

in for parameters with data being passed to the API from the calling application
out for parameters with data being passed from the API to the calling application.

It should be noted, that in the “C” language interface, parameters that are specified as out require a
pointer to be passed from the calling application to the API. The API in turn will return the
appropriate data in the space pointed to by the pointer. The specification of these in and out
parameters is provided to clarify the specific purpose of these parameters in the calls.

6.1 WAPI Connection Functions

Connected/Connectedless Overview

The Coalition WMConnect /WMDisconnect API commands are intended to bound a set of related work
by the application using them. When issued, the WMConnect returns a handle whose value is used on all
other Coalition API calls. The handle value is unique and relates API calls which are issued between a
WMConnect /WMDisconnect pair instance. The WMConnect command allows information to be
supplied once and to remain valid until a WMDisconnect occurs.

Information supplied during the WMConnect (see the ConnectInfo structure in the WMConnect call)
includes identification information relating to who/what is requesting services from the WFM Engine for
use by an authentication service. The structure of the session handle that is returned by the WMConnect
call is a pointer to a structure that contains a session ID and another structure pointer containing vendor
specific information. (See the Session Handle structure in the WMConnect call.)

For those workflow servers that establish a connection, the session ID and the pointer to the vendor specific
information would be returned by the workflow engine. For those workflow servers that do not establish a
connection, the session ID would be set to 0, and a pointer to the connection information that was passed in
by the user will be stored in the private structure contained in the session handle structure.

Operation between the API and the Engine

The construction of the Coalition API calls are intended to have little impact on the operational structure of
how a WFM product supports them. The API calls are considered to be protocol neutral in that once the
API boundary is crossed, different types of mechanisms may be employed to deliver the request to the
WFM engine. A particular WFM product's method of interacting between the API calls and the WFM
Engine functions may be RPC, conversational, messaging (connectedless) or others.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 20 of 20
Copyright © 1993, 1999, The Workflow Management Coalition

If a messaging mechanism is used by a WFM product, the receipt of a WMConnect may result in the
determination of what messaging queue is to be used for interaction between its API support and the WFM
engine functions, plus establishing control information to link that queue to subsequent API calls which use
a particular handle. If the WFM engine is remote, it may also send a setup type of message to the engine.

If a conversational mechanism is used by a WFM product, and the WFM engine is remote, the receipt of a
WMConnect may result in the establishment of a communications session between the code supporting the
API calls and the WFM engine.

If a data base is being used, one of the results of the WMConnect may be the establishment of a connection
to the appropriate data store facility.

A particular WFM product may choose to accept the WMConnect command, return a handle, and ignore
the fact that it occurred.

The above are examples of possible operations performed by different WFM products in support of a
WMConnect command. Obviously, more are possible.

In some cases, a product will be required to connect a single workstation to multiple WFM engines. It is
possible that multiple WMConnect commands are active concurrently and the subsequent API commands
be directed to the correct WFM engine. The WMConnect command may be used to designate a particular
engine. The handle returned from the WMConnect command may be used on subsequent API calls to link
those which relate to a engine.

The results of a WMDisconnect command is may vary, again depending upon a particular WFM product
implementation. Its purpose is to indicate that the application issuing the preceding API calls will no longer
be accessing the WFM engine functions within the previous context. In some products, upon receipt of a
WMDisconnect command, communications and other resource types may be released.

Application Operation when using the API calls

The operational structure of an application as it relates to the use of the Coalition API calls is affected by
the way the API calls are constructed. The current construction of the Coalition API calls result in the code
segment of the application making the API call to run in blocked mode. That is, the application will issue
an API command and 'wait' for a response from what it perceives as the WFM engine. When making the
API call, the application code segment gives up control to the API and does not regain control until the API
command is satisfied.

Much of the time, the API commands will be issued due to a workflow participant's direction via
the application's End User Interface (EUI). Most of the current API commands are not such that a
workflow participant would be interested in making the request, doing something else, and then
sometime later (via a process/queue/whatever) viewing the real response to the request. With the
request types supported by the API set, it would normally be the case that a workflow participant
would want to see the response to the request as soon as possible.

The API calls could be constructed in such a way to allow the application code segment making the API
call to run in unblocked mode. That is, to make the API call 'immediate return' rather than waiting for the
actual response to the requested action. If this were done, the Coalition would need to define additional
functions to support connectedless mode of operation (in some manner, get the asynchronous response
when it did arrive and get it to the workflow participant).

The WMConnect / WMDisconnect API commands themselves have nothing to do with the ability of an
application to run connected or connectedless as they are now defined.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 21 of 21
Copyright © 1993, 1999, The Workflow Management Coalition

Synchronous vs Asynchronous Calls

Most API calls in the WAPI call set are synchronous calls. In particular all the query related API calls are
synchronous. Other calls may have some asynchronous behavior in that the call itself will return
synchronously to the caller program, but the work specified by the call may be executed by the Workflow
Engine at a later time, letting the application proceed. This set of API calls will not include any Call-Back
mechanism to synchronize asynchronous calls.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 22 of 22
Copyright © 1993, 1999, The Workflow Management Coalition

6.1.1 WMConnect

NAME

WMConnect - Connect to the WFM Engine for this series of interactions

DESCRIPTION

The WMConnect command informs the WFM Engine that other commands will be originating
from this source.

WMTErrRetType WMConnect (
in WMTPConnectInfo pconnect_info,
out WMTPSessionHandle psession_handle)

Argument Description

pconnect_info Pointer to structure containing the information required to create a connection.
psession_handle Pointer to a structure containing information which can be passed to the WFM

Engine on all subsequent API calls which would identify interactions within the
WMConnect / WMDisconnect bounds, that define a participant’s session
interaction with the Engine. These handles are opaque so that in connectedless
environments the handles include participants identities and passwords rather
than session identification. There will be a special value for a handle to indicate
failure of the function.

ERROR RETURN VALUE

WM_SUCCESS
WM_CONNECT_FAILED

WMDisconnectNAME

WMDisconnect - Disconnect from the WFM Engine for this series of interactions

DESCRIPTION

The WMDisconnect command tells the WFM Engine that no more API calls will be issued from this
source using the named handle. The WFM Engine could discard state data being held or take other closure
actions.

WMTErrRetType WMDisconnect (
in WMTPSessionHandle psession_handle)

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 23 of 23
Copyright © 1993, 1999, The Workflow Management Coalition

6.2 WAPI Process Control Functions

Process Control Functions can be defined as those which change the operational state of one or more
process instances. These API calls are intended for use by the WFM end user application. However, some
of the API calls, or parameters within some of the API calls, may affect multiple users and would normally
be restricted to the use of a process administrator.

6.2.1 WMOpenProcessDefinitionsList

NAME

WMOpenProcessDefinitionsList - Specifies and opens the query to produce a list of all process
definitions that meet the selection criterion of the filter.

DESCRIPTION

This command may also be used by a manager or process administrator to get a list of process definitions so
they may view which processes are startable by particular persons. This command directs the WFM Engine
to open the query to provide a list of process definitions which are available to a particular workflow
participant, some of which may be startable by the participant. It is assumed that not all processes in an
organization may be started by all workflow participants. One of the uses of this API is to allow a workflow
participant to view which processes he/she can start with the expectation that the next action by the
workflow participant would be to pick one to be started.

This command will return a query handle for a list of process definitions that match the specified value for
the attribute. The command will also return, optionally, the total count of definitions available. If the count
is requested and the implementation does not support it, the command will return a pcount value of -1. If
pproc_def_filter is NULL, then the function, with the corresponding fetch calls will return the list of
ALL process definitions.

(Note: This API does not change the state of process or activity instances per the definition above of
Process Control Functions. It is included in this section because it might normally lead to the execution of
other API calls which would cause operational state changes.)

WMTErrRetType WMOpenProcessDefinitionsList (
in WMTPSessionHandle psession_handle,
in WMTPFilter pproc_def_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_filter Filter associated with the process definition.
count_flag Boolean flag that indicates if the total count of definitions should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of process definitions that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 24 of 24
Copyright © 1993, 1999, The Workflow Management Coalition

REQUIREMENTS

No requirements are assumed to exist with regard to the type of process model.

No requirements are assumed to exist with regard to how workflow participant’s are identified within the
WFM Engine.

RATIONALE FOR API

This command and the corresponding fetch calls allows a workflow participant to retrieve the
process definition ids which a workflow participant is authorized to start. They might be used in
conjunction with the WMCreateProcessInstance and WMStartProcess API calls to start a
particular named process.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 25 of 25
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.2 WMFetchProcessDefinition

NAME

WMFetchProcessDefinition - Returns the next process definition from the set of process definitions that
met the selection criterion stated in the WMOpenProcessDefinitionsList call.

DESCRIPTION

This command directs the WFM Engine to provide one process definition from the list of process
definitions which are available to a particular workflow participant, some of which may be startable by the
participant. It is assumed that not all processes in an organization may be started by all workflow
participants. One of the uses of this API is to allow a workflow participant to view which processes he/she
can start with the expectation that the next action by the workflow participant would be to pick one to be
started. This fetch function, as well as all other fetch functions in this API, will return subsequent items
after every call, one at a time. The fetch process is complete when the function returns the error
WM_NO_MORE_DATA. The sort order in which the items are returned is specific of the workflow engine
servicing the call, no specific order should be assumed.

WMTErrRetType WMFetchProcessDefinition (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPProcDef pproc_def_buf_ptr)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessDefinitionsList query command.
pproc_def_buf_ptr Pointer to a buffer area provided by the client application where the process

definition structure will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 26 of 26
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.3 WMCloseProcessDefinitionsList

NAME

WMCloseProcessDefinitionsList - Closes the query of process definitions.

DESCRIPTION

WMTErrRetType WMCloseProcessDefinitionsList(
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessDefinitionsList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 27 of 27
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.4 WMOpenProcessDefinitionStatesList

NAME

WMOpenProcessDefinitionStatesList - Specifies and opens the query to produce the list of states of the
process definition that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of states for a process definition. The command will also
return, optionally, the total count of definitions available. If the count is requested and the implementation
does not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available states of the process definition that match the
filter criterion, in order to offer this list to the application user. For example, process definitions can be in
states such as disabled (thus disallowing temporarily the creation of new process definitions), or enabled
(thus allowing again the creation of new process definitions based on the named definition). If
pproc_def_state_filter is NULL, then the function, with the corresponding fetch calls will return the list
of ALL states available for the definition.

WMTErrRetType WMOpenProcessDefinitionStatesList (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPFilter pproc_def_state_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTUInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing the unique process definition ID.
pproc_def_state_filter Filter associated with the process definition state.
count_flag Boolean flag that indicates if the total count of process definition states

should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of states for this process definition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 28 of 28
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.5 WMFetchProcessDefinitionState

NAME

WMFetchProcessDefinitionState - Returns the next process definition state, from the list of states of the
process definition that match the filter criterion.

DESCRIPTION

This command returns a process definition state. This fetch function will return subsequent process
definition states after every call. The fetch process is complete when the function returns the error
WM_NO_MORE_DATA.

WMTErrRetType WMFetchProcessDefinitionState (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPProcDefState pproc_def_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessDefinitionStatesList query command.
pproc_def_state Pointer to a buffer area provided by the client application where the state name

will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 29 of 29
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.6 WMCloseProcessDefinitionStatesList

NAME

WMCloseProcessDefinitionStatesList - Closes the query for process definition states.

DESCRIPTION

WMTErrRetType WMCloseProcessDefinitionStatesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessDefinitionStatesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 30 of 30
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.7 WMChangeProcessDefinitionState

NAME

WMChangeProcessDefinitionState - Changes the state of the named process definition.

DESCRIPTION

This command is defined to allow a process definition to be changed temporarily to a specific state such as
disabled (thus disallowing temporarily the creation of new process definitions), or enabled (thus allowing
again the creation of new process definitions based on the named definition).

WMTErrRetType WMChangeProcessDefinitionState (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPProcDefState pproc_def_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_def_id Pointer to a structure containing a unique process definition ID.
pproc_def_state Pointer to a structure that contains the name of the state to change the

process definition to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each process definition must have a unique ID within an administrative scope.

RATIONALE FOR API

This API allows the possible intervention of a process administrator in a running process. This might be
for the purpose of changing the process definition and having all subsequently created definitions reflect the
new definition.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Definition State
Event Code: WMChangedProcessDefinitionState

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 31 of 31
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.8 WMCreateProcessInstance

NAME

WMCreateProcessInstance - Create an instance of a previously defined process.

DESCRIPTION

An operational instance of the named process definition will be created by a WFM Engine as the result of
this command. A call to WMStartProcess would then start the process.

To assign attributes to the process instance, you will make multiple calls to
WMAssignProcessInstanceAttribute.

The process instance ID returned by this call is valid and reliable until WMStartProcess is called, at which
time it may be reassigned to a new value.

WMTErrRetType WMCreateProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPText pproc_inst_name,
out WMTPProcInstID pproc_inst_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing a unique process definition ID.
pproc_inst_name Pointer to the name for the process instance created by this call.
pproc_inst_id Pointer to a structure containing the process instance ID created by this call.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION

REQUIREMENTS

No requirements exist with regard to process model type.

RATIONALE FOR API

This API allows a workflow participant to create an instance of a process. It is anticipated that vendor’s
implementations will be of at least 2 types: one in which the creation of a process instance and the starting
of the same are a single functionality and another in which this functionality is separate. The calls in this
API definition are thus separated to accommodate both types of implementation. Vendors that provide the
single functionality will implement the creation and start of a process through the creation of a temporary
(possibly local) proc_inst_id through WMCreateProcessInstance, assign attributes to it and then call
WMStartProcess.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Create / Start Process Instance
Event Code: WMCreatedProcessInstance

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 32 of 32
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.9 WMStartProcess

NAME

WMStartProcess - Start the named process.

DESCRIPTION

The WMStartProcess command directs the WFM Engine to begin executing a process, for which an
instance has been created. When a process is started through this command, the first activity(s) of the
process will be started. The process instance ID returned by this call will be valid for the life of the process
instance.

Note: The programmer needs to maintain the association between the new process instance ID and the
session in order to identify which session they need to connect to for future calls.

WMTErrRetType WMStartProcess (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
out WMTPProcInstID pnew_proc_inst_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the process instance ID returned by the

WMCreateProcessInstance call.
pnew_proc_inst_id Pointer to a structure containing the process instance ID created by this call.

This ID will be valid for the life of the process instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ATTRIBUTE

REQUIREMENTS

The process instance to be started has a unique id within an administrative scope.
No requirements exist with regard to process model type.

RATIONALE FOR API

This API allows a workflow participant to start a created process instance. It is anticipated that vendor’s
implementations will be of at least 2 types: one in which the creation of a process instance and the starting
of the same are a single functionality and another in which this functionality is separate. The calls in this
API definition are thus separated to accommodate both types of implementation. Vendors that provide the
single functionality will implement the creation and start of a process through the creation of a temporary
(possibly local) proc_inst_id through WMCreateProcessInstance, assign attributes to it and then call
WMStartProcess.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Create / Start Process Instance
Event Code: WMStartedProcessInstance

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 33 of 33
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.10 WMTerminateProcessInstance

NAME

WMTerminateProcessInstance - Terminate a process instance.

DESCRIPTION

This command provides the capability of gracefully terminating a process without aborting the process
instance. Return from this call does not imply that the process instance has terminated, for example, the
process instance could be stopped when currently running activities are complete. The exact behavior of
currently running activities is system dependent.

WMTErrRetType WMTerminateProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id A pointer to a structure that indicates the process instance that you want to
terminate.

ERROR RETURN VALUE

The error return value for this function will include one or more of the following error codes (see Error
Return Codes section):

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE

REQUIREMENTS

None

RATIONALE FOR API

To allow a process instances to be terminated.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Instance State
Event Code: WMTerminatedProcessInstance

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 34 of 34
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.11 WMOpenProcessInstanceStatesList

NAME

WMOpenProcessInstanceStatesList - Specifies and opens the query to produce the list of states of the
process instance that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of states for a process instance. The command will also
return, optionally, the total count of states available. If the count is requested and the implementation does
not support it, the command will return a pcount value of -1. The meaning of states is dependent upon the
particular WFM Engine implementation. For example, the process instance can have states such as
suspended or in-progress.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available states of the process instance that match the
filter criterion, in order to offer this list to the application user. If pproc_inst_state_filter is NULL, then
the function, with the corresponding fetch calls will return the list of ALL states available for the process
instance.

WMTErrRetType WMOpenProcessInstanceStatesList (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPFilter pproc_inst_state_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pproc_inst_state_filter Filter associated with the process instance state.
count_flag Boolean flag that indicates if the total count of process instance states

should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of states for this process instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 35 of 35
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.12 WMFetchProcessInstanceState

NAME

WMFetchProcessInstanceState - Returns the next process instance state from the list of states of the
process instance that match the filter criterion.

DESCRIPTION

This command returns a process instance state. This fetch function will return subsequent process instance
states after every call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA.

WMTErrRetType WMFetchProcessInstanceState (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPProcInstState pproc_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessInstanceStatesList query command.
pproc_inst_state Pointer to a buffer area provided by the client application where the state

name will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 36 of 36
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.13 WMCloseProcessInstanceStatesList

NAME

WMCloseProcessInstanceStatesList - Closes the query for process instance states.

DESCRIPTION

WMTErrRetType WMCloseProcessInstanceStatesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessInstanceStatesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 37 of 37
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.14 WMChangeProcessInstanceState

NAME

WMChangeProcessInstanceState - Changes the state of the named process instance.

DESCRIPTION

This command is defined to allow a process instance to be changed temporarily to a specific state such as
suspended.

Execution of this command will cause the single process instance that is named to be transitioned to a new
state. In this case, the meaning of all states is dependent upon the particular WFM Engine implementation.
This command will set the state attribute of the process instance to a state such as suspended or running.

WMTErrRetType WMChangeProcessInstanceState (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPProcInstState pproc_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing a unique process instance ID.
pproc_inst_state Pointer to a structure that contains the name of the process state that you

want to change the instance to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique ID within an administrative scope.

RATIONALE FOR API

This API allows the possible intervention of a workflow participant in a running process.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Instance State
Event Code: WMChangedProcessInstanceState

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 38 of 38
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.15 WMOpenProcessInstanceAttributesList

NAME

WMOpenProcessInstanceAttributesList - Specifies and opens the query to produce the list of attributes
that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of attributes for a process instance. The command will
also return, optionally, the total count of attributes available. If the count is requested and the
implementation does not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available attributes that can be assigned to the process
instance, in order to offer this list to the application user. Attribute values can be obtained as well provided
that a buffer of enough size is passed in the fetch call. Individual attribute values can also be retrieved with
the WMGetProcessInstanceAttributeValue call. If pproc_inst_attr_filter is NULL, then the
function, with the corresponding fetch calls will return the list of ALL attributes available for the process
instance.

WMTErrRetType WMOpenProcessInstanceAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPFilter pproc_inst_attr_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pproc_inst_attr_filter Filter associated with the process instance attributes.
count_flag Boolean flag that indicates if the total count of process instance attributes

should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of attributes for this process instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 39 of 39
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.16 WMFetchProcessInstanceAttribute

NAME

WMFetchProcessInstanceAttribute - Returns the next process instance attribute from the list of attributes
that match the filter criterion.

DESCRIPTION

This command returns a process instance attribute. This fetch function will return subsequent process
instance attributes after every call. The fetch process is complete when the function returns the error
WM_NO_MORE_DATA. The fetch function will return the attribute value as well in a buffer specified in the call.
If buffer_size is NULL then the attribute value will not be returned. If buffer_size is not large enough to
hold the attribute value then the function will return as much of the attribute value as can be fit in the buffer.
The proper length of the attribute value is available in the attribute_length field. The application can
compare the attribute_length with the buffer_size to determine if the full value was returned.

WMTErrRetType WMFetchProcessInstanceAttribute (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenProcessInstanceAttributesList query command.

pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.
buffer_size Size of the buffer.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 40 of 40
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.17 WMCloseProcessInstanceAttributesList

NAME

WMCloseProcessInstanceAttributesList - Closes the query for process instance attributes.

DESCRIPTION

WMTErrRetType WMCloseProcessInstanceAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessInstanceAttributesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 41 of 41
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.18 WMGetProcessInstanceAttributeValue

NAME

WMGetProcessInstanceAttributeValue - Returns the value, type and length of a process instance
attribute specified by the proc_inst_id and attribute_name parameters.

DESCRIPTION

This command will return the value of a process instance attribute in the buffer specified in the call.

WMTErrRetType WMGetProcessInstanceAttributeValue (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.
buffer_size Size of the buffer to be filled.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ATTRIBUTE
WM_INSUFFICIENT_BUFFER_SIZE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 42 of 42
Copyright © 1993, 1999, The Workflow Management Coalition

6.2.19 WMAssignProcessInstanceAttribute

NAME

WMAssignProcessInstanceAttribute - Assign the proper attribute to process instance(s)

DESCRIPTION

This command tells the WFM Engine to assign an attribute, change an attribute or to change the value of an
attribute of a process instance.

This command changes the value of an attribute of a process instance. Attributes of process instances are
of the kind called Process Control and Process Relevant Data. These attributes are specified as
quadruplets of name, type, length and value.

WMTErrRetType WMAssignProcessInstanceAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the process instance ID that indicates the
process for which the attribute will be assigned.

pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED

REQUIREMENTS

None

RATIONALE FOR API

For various business reasons, certain pieces of work are required to be handled with particular attributes
(e.g. priority) relative to other pieces of like work. This command allows attributes to be set on those pieces
of work. In some cases, these attributes are determined by the WFM product based upon data values
existing during process execution. The setting of these attributes through the use of this API is provided to
cover the cases where applications set them upon requests from users.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 43 of 43
Copyright © 1993, 1999, The Workflow Management Coalition

Audit Data Type: Change Process Instance Attributes
Event Code: WMAssignProcessInstanceAttributes

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 44 of 44
Copyright © 1993, 1999, The Workflow Management Coalition

6.3 WAPI Activity Control Functions

Activity Control Functions can be defined as those which change the operational state of one or more
activity instances. These API calls are intended for use by the WFM end user. However, some of the API
calls, or parameters within some of the API calls, may affect multiple users and would normally be
restricted to the use of a process administrator.

6.3.1 WMOpenActivityInstanceStatesList

NAME

WMOpenActivityInstanceStatesList - Specifies and opens the query to produce the list of states of the
activity instance that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of states for an activity instance. The command will also
return, optionally, the total count of states available. If the count is requested and the implementation does
not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available states of the activity instance that match the
filter criterion, in order to offer this list to the application user. If pact_inst_state_filter is NULL, then
the function, with the corresponding fetch calls will return the list of ALL states available for the activity
instance.

WMTErrRetType WMOpenActivityInstanceStatesList (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPFilter pact_inst_state_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing a unique process instance ID.
pactivity_inst_id Pointer to a structure containing the unique activity instance ID.
pact_inst_state_filter Filter associated with the activity instance state.
count_flag Boolean flag that indicates if the total count of activity instance states

should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of states for this activity instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 45 of 45
Copyright © 1993, 1999, The Workflow Management Coalition

6.3.2 WMFetchActivityInstanceState

NAME

WMFetchActivityInstanceState - Returns the next activity instance state, from the list of states of the
activity instance that match the filter criterion.

DESCRIPTION

This command returns an activity state. This fetch function will return subsequent activity states after every
call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA.

WMTErrRetType WMFetchActivityInstanceState (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPActivityInstState pactivity_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenActivityInstanceStatesList query command.

pactivity_inst_state Pointer to a buffer area provided by the client application where the state
name will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 46 of 46
Copyright © 1993, 1999, The Workflow Management Coalition

6.3.3 WMCloseActivityInstanceStatesList

NAME

WMCloseActivityInstanceStatesList - Closes the query for activity instance states.

DESCRIPTION

WMTErrRetType WMCloseActivityInstanceStatesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenActivityInstanceStatesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 47 of 47
Copyright © 1993, 1999, The Workflow Management Coalition

6.3.4 WMChangeActivityInstanceState

NAME

WMChangeActivityInstanceState - Changes the state of the named activity instance.

DESCRIPTION

This command directs a WFM Engine to change the state of a single activity instance within a process
instance. This allows the state of one activity instance to be changed, without impacting others in the
process instance.

For example, this command will be used to change the state of an activity instance to suspended. This
command can be used afterwards to change the state of the activity instance back to running. The
implementation documentation will provide the names and semantics of the supported activity states for a
particular implementation.

WMTErrRetType WMChangeActivityInstanceState (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPActivityInstState pactivity_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing a unique process instance ID.
pactivity_inst_id Pointer to structure containing the activity instance ID of the activity

whose state to change.
pactivity_inst_state Pointer to a structure that contains the name of the activity instance state

that you want to change to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique ID within an administrative scope.
Each activity instance must have a unique ID within a process instance.

RATIONALE FOR API

A workflow participant may wish to modify the state attributes associated with a particular activity instance.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Activity Instance State
Event Code: WMChangedActivityInstanceState

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 48 of 48
Copyright © 1993, 1999, The Workflow Management Coalition

6.3.5 WMOpenActivityInstanceAttributesList

NAME

WMOpenActivityInstanceAttributesList - Specifies and opens the query to produce the list of activity
attributes that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of attributes for an activity instance. The command will
also return, optionally, the total count of attributes available. If the count is requested and the
implementation does not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available attributes that can be assigned to the activity
instance, in order to offer this list to the application user. Attribute values can be obtained as well provided
that a buffer of enough size is passed in the fetch call. Individual attribute values can also be retrieved with
the WMGetActivityInstanceAttributeValue call. If pact_inst_attr_filter is NULL, then the function,
with the corresponding fetch calls will return the list of ALL attributes available for the activity instance.

WMTErrRetType WMOpenActivityInstanceAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPFilter pact_inst_attr_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pactivity_inst_id Pointer to a structure containing the unique activity instance ID.
pact_inst_attr_filter Filter associated with the activity instance attributes.
count_flag Boolean flag that indicates if the total count of activity instance attributes

should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of attributes for this activity instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 49 of 49
Copyright © 1993, 1999, The Workflow Management Coalition

6.3.6 WMFetchActivityInstanceAttribute

NAME

WMFetchActivityInstanceAttribute - Returns the next activity instance attribute from the list of activity
attributes that match the filter criterion.

DESCRIPTION

This command returns a activity instance attribute. This fetch function will return subsequent activity
instance attributes after every call. The fetch process is complete when the function returns the error
WM_NO_MORE_DATA. The fetch function will return the attribute value as well in a buffer specified in the call.
If buffer_size is NULL then the attribute value will not be returned. If buffer_size is not large enough to
hold the attribute value then the function will return as much of the attribute value as can be fit in the buffer.
The proper length of the attribute value is available in the attribute_length field. The application can
compare the attribute_length with the buffer_size to determine if the full value was returned.

WMTErrRetType WMFetchActivityInstanceAttribute (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenActivityInstanceAttributesList query command.

pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed.
buffer_size Size of the buffer.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 50 of 50
Copyright © 1993, 1999, The Workflow Management Coalition

6.3.7 WMCloseActivityInstanceAttributesList

NAME

WMCloseActivityInstanceAttributesList - Closes the query for activity instance attributes.

DESCRIPTION

WMTErrRetType WMCloseActivityInstanceAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenActivityInstanceAttributesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 51 of 51
Copyright © 1993, 1999, The Workflow Management Coalition

6.3.8 WMGetActivityInstanceAttributeValue

NAME

WMGetActivityInstanceAttributeValue - Returns the value, type and length of an activity instance
attribute specified by the pproc_inst_id, pactivity_inst_id and attribute_name parameters.

DESCRIPTION

This command will return the value of an activity instance attribute in the buffer specified in the call.

WMTErrRetType WMGetActivityInstanceAttributeValue (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pactivity_inst_id Pointer to a structure containing the unique activity instance ID.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.
buffer_size Size of the buffer to be filled.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ATTRIBUTE
WM_INSUFFICIENT_BUFFER_SIZE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 52 of 52
Copyright © 1993, 1999, The Workflow Management Coalition

6.3.9 WMAssignActivityInstanceAttribute

NAME

WMAssignActivityInstanceAttribute - Assign an attribute to an activity instance.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, to change an attribute or to change the value of
an attribute of the activity instance within a named process definition.

This command changes the value of the attributes of a activity instance. These attributes of activity
instances are of the kind called Process Control and Process Relevant Data. These attributes are specified
as quadruplets of name, type, length and value.

WMTErrRetType WMAssignActivityInstanceAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pactivity_inst_id Pointer to a structure containing the activity instance identification for which

the attribute will be assigned.
pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED

REQUIREMENTS

None

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign Activity Instance Attributes
Event Code: WMAssignedActivityInstanceAttributes

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 53 of 53
Copyright © 1993, 1999, The Workflow Management Coalition

6.4 WAPI Process Status Functions

The process status functions are intended to provide a view of the work done, work to be done, work
associated with a workflow participant or group of workflow participants, etc. The status queries may be
requested by a normal workflow participant or may be requested by a manager or process administrator who
wishes to view the progress of work within his/her domain.

The status API calls are structured such that they provide views ranging from a view of global work to a
view of work within a single process instance. These views are as follows:

1 All the process instances associated with a
process definition.

WM(Open+Fetch+Close)ProcessInstancesList

2 A view of a single process instance. WMGetProcessInstance

In addition, various filters (parameters) are provided with the calls such that the information returned may
be tailored.

The API functions associated with these API calls are described in this section.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 54 of 54
Copyright © 1993, 1999, The Workflow Management Coalition

6.4.1 WMOpenProcessInstancesList

NAME

WMOpenProcessInstancesList - Specifies and opens the query to produce a list of process
instances that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of process instances that match the specified value for
the attribute. The command will also return, optionally, the total count of instances available. If the count
is requested and the implementation does not support it, the command will return a pcount value of -1.

This command will be used to set up a wide variety of queries of process instances. For example, this
command will be used to set up the query for a list of completed or suspended process instances. If
pproc_inst_filter is NULL, then the function, with the corresponding fetch calls will return the list of
ALL accessible process instances.

WMTErrRetType WMOpenProcessInstancesList (
in WMTPSessionHandle psession_handle,
in WMTPFilter pproc_inst_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_filter Pointer to a structure containing the information for this request.
count_flag Boolean flag that indicates if the total count of process instances should be

returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of process instances that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER

REQUIREMENTS

None

RATIONALE FOR API

The requester of the information needs to know what work of a particular type is in process or needs to
know what work has completed.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 55 of 55
Copyright © 1993, 1999, The Workflow Management Coalition

6.4.2 WMFetchProcessInstance

NAME

WMFetchProcessInstance - Returns the next process instance from the list of process instances
that met the selection criterion stated in the corresponding WMOpenProcessInstancesList call.

DESCRIPTION

This command returns a process instance. This fetch function will return subsequent process instances after
every call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA.

WMTErrRetType WMFetchProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPProcInst pproc_inst_buf_ptr)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenProcessInstancesList query command.
pproc_inst_buf_ptr Pointer to a buffer area provided by the client application where the set of

process instances will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 56 of 56
Copyright © 1993, 1999, The Workflow Management Coalition

6.4.3 WMCloseProcessInstancesList

NAME

WMCloseProcessInstancesList - Closes the query of process instances.

DESCRIPTION

This command will close the query of process instances that match the specified query attribute, specified
in the WMOpenProcessInstancesList command. The query handle can no longer be used.

WMTErrRetType WMCloseProcessInstancesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenProcessInstancesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 57 of 57
Copyright © 1993, 1999, The Workflow Management Coalition

6.4.4 WMGetProcessInstance

NAME

WMGetProcessInstance - Return a specific process instance record.

DESCRIPTION

The WMGetProcessInstance provides information about what work has been done within a
process instance and what is the current work being done within the process instance.

WMTErrRetType WMGetProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
out WMTPProcInst pproc_inst)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to the process instance identification.
pproc_inst Pointer to a structure containing the requested process instance information.

Includes the state and other attributes of the process instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 58 of 58
Copyright © 1993, 1999, The Workflow Management Coalition

6.5 WAPI Activity Status Functions

The process status functions are intended to provide a view of the work done, work to be done, work
associated with a workflow participant or group of workflow participants, etc. The status queries may be
requested by a normal workflow participant or may be requested by a manager or process administrator who
wishes to view the progress of work within his/her domain.

The status API calls are structured such that they provide views ranging from a view of global work to a
view of work within a single activity instance. These views are as follows:

1 All the activity instances associated to a
process definition or instance

WM(Open+Fetch+Close)ActivityInstancesList

2 A view of a single activity within a process
instance.

WMGetActivityInstance

In addition, various filters (parameters) are provided with the calls such that the information returned may
be tailored.

The API functions associated with these API calls are described in this section.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 59 of 59
Copyright © 1993, 1999, The Workflow Management Coalition

6.5.1 WMOpenActivityInstancesList

NAME

WMOpenActivityInstancesList - Specifies and opens the query to produce a list of activity
instances that match the criterion of the filter.

DESCRIPTION

This command will return a query handle for a list of activity instances that match the criterion of the filter.
The command will also return, optionally, the total count of activity instances available. If the count is
requested and the implementation does not support it, the command will return a pcount value of -1.

This command will be used to set up a wide variety of queries of activity instances. For example, this
command will be used to set up the query for a list of completed or suspended activity instances. If
pactivity_inst_filter is NULL, then the function, with the corresponding fetch calls will return the list
of ALL accessible activity instances.

WMTErrRetType WMOpenActivityInstancesList (
in WMTPSessionHandle psession_handle,
in WMTPFilter pactivity_inst_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pactivity_inst_filter Pointer to a structure containing the information for this request.
count_flag Boolean flag that indicates if the total count of activity instances should be

returned.
pquery_handle Pointer to a structure containing a unique query information returned by this

function.
pcount Total number of activity instances that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER

REQUIREMENTS

None

RATIONALE FOR API

The requester of the information needs to know what work of a particular type is in process or needs to
know what work has completed.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 60 of 60
Copyright © 1993, 1999, The Workflow Management Coalition

6.5.2 WMFetchActivityInstance

NAME

WMFetchActivityInstance - Returns the next activity instance from the list of activity instances
that met the selection criterion in the corresponding WMOpenActivityInstancesList call.

DESCRIPTION

This command returns an activity instance. This fetch function will return subsequent activity instances
after every call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA.

WMTErrRetType WMFetchActivityInstance (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPActivityInst pactivity_inst)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenActivityInstancesList query command.
pactivity_inst Pointer to a buffer area provided by the client application where the set of activity

instances will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 61 of 61
Copyright © 1993, 1999, The Workflow Management Coalition

6.5.3 WMCloseActivityInstancesList

NAME

WMCloseActivityInstancesList - Closes the query of activity instances.

DESCRIPTION

This command will close the query of activity instances that match the specified query attribute, specified
in the WMOpenActivityInstancesList command. The query handle can no longer be used.

WMTErrRetType WMCloseActivityInstancesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenActivityInstancesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 62 of 62
Copyright © 1993, 1999, The Workflow Management Coalition

6.5.4 WMGetActivityInstance

NAME

WMGetActivityInstance - Returns the record of a specific activity instance.

DESCRIPTION

The WMGetActivityInstance command provides status about an activity within a process
instance.

WMTErrRetType WMGetActivityInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
out WMTPActivityInst pactivity_inst)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the process instance identification.
pactivity_inst_id Pointer to a structure containing the identification of the activity instance.
pactivity_inst Pointer to a structure containing the activity instance information.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE

REQUIREMENTS

None

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 63 of 63
Copyright © 1993, 1999, The Workflow Management Coalition

6.6 WAPI Worklist Functions

The WAPI worklist API calls provide workflow participants access to information about work to which
they have been assigned. As described by the WFM Coalition reference model, a process consists of a set
of activities connected in such a way to control the sequencing of application invocation. An activity is
associated with one or more applications to be invoked and also, during run time, is associated with the
person(s) who has been assigned to do the work. Depending upon a WFM product’s implementation, a
workflow participant may be assigned one or more pieces of work at any one time. Each piece of work
assigned to a workflow participant is called a ‘work item’ and the collection of all work items assigned to a
workflow participant is called that workflow participant’s ‘worklist’.

(Note: To clarify the difference between an ‘activity’ and a ‘work item’ the following discussion is
included. When a process is being defined (build time), an ‘activity’ is the construct used to define a piece
of work to be done. It serves as a type of anchor point for further descriptions of that work to be done (i.e.,
the name of the application to be invoked, possibly a reference to skills needed to do the work, a symbolic
name denoting the network address where the application is to be executed, etc.). During run time, when
the activity is ready to be executed and one or more candidate persons are assigned to do the work, a work
item is created and placed on that person(s) worklist. So, even though an activity and a work item both
represent a piece of work, they come into existence at different points in time, there may be more than one
work item for an activity and some operational characteristics may be different.)

A worklist then is defined as: the result of an implementation-defined query against the work item space. It
is a list of work items and a work item is one element in a worklist.

The API calls in this section exist for the manipulation of work items and worklists.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 64 of 64
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.1 WMOpenWorkList

NAME

WMOpenWorkList - Specifies and opens the query to produce the worklist that matches the
criterion of the filter.

DESCRIPTION

This command provides the capability of returning a list of work items assigned to a specified workflow
participant or a workgroup. The requester may be making the request on behalf of himself or may be a
manager wanting to know what work has been assigned to a particular person or a workgroup.

A query handle will be returned for the list of work items that match the specified value for the attribute.
The command will also return, optionally, the total count of work items available. If the count is requested
and the implementation does not support it, the command will return a pcount value of -1. If
pworklist_filter is NULL, then the function, with the corresponding fetch calls will return the list of
ALL accessible work items.

WMTErrRetType WMOpenWorkList (
in WMTPSessionHandle psession_handle,
in WMTPFilter pworklist_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pworklist_filter Pointer to a structure containing the filter information for this request.
count_flag Boolean flag that indicates if the total count of work items should be returned.
pquery_handle Pointer to a structure containing a unique query information returned by this

function.
pcount Total number of work items that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER

REQUIREMENTS

None

RATIONALE FOR API

A workflow participant must be able to determine what work has been assigned. A manager must be able to
determine who has work and what work is to be done within a department.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 65 of 65
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.2 WMFetchWorkItem

NAME

WMFetchWorkItem - Returns the next work item from the worklist that met the selection criterion in the
corresponding WMOpenWorkList call.

DESCRIPTION

This command returns a work item. This fetch function will return subsequent work items after every call.
The fetch process is complete when the function returns the error WM_NO_MORE_DATA.

WMTErrRetType WMFetchWorkItem (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPWorkItem pwork_item)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the WMOpenWorkList

query command.
pwork_item Pointer to a buffer area provided by the client application where the set of work

item will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 66 of 66
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.3 WMCloseWorkList

NAME

WMCloseWorkList - Closes the query of work items.

DESCRIPTION

This command will close the query of work items that match the specified query filter, specified in the
WMOpenWorkList command. The query handle can no longer be used.

WMTErrRetType WMCloseWorkList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the WMOpenWorkList

query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 67 of 67
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.4 WMGetWorkItem

NAME

WMGetWorkItem - Returns the record of a specific work item

DESCRIPTION

This command allows a workflow participant to designate which piece of work he wishes to do. The viewer
may be selecting a work item from a list obtained by the WMOpenWorkList command.

This command operates on a single work item basis. This command execution need not imply that the
work item is reserved or locked.

WMTErrRetType WMGetWorkItem (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id,
out WMTPWorkItem pwork_item)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the work item identification for this request.
pwork_item Pointer to a structure containing the work item being returned by this function.

ERROR RETURN VALUE

The error return value for this function will include one or more of the following error codes (see Error
Return Codes section):

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM

REQUIREMENTS

The application issuing the command must have sufficient identification information to select the
work item desired.

RATIONALE FOR API

A workflow participant must be able to tell the WFM Engine which piece of work is to be selected.

AUDIT INFORMATION

The following audit information is directly related to this function and might be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Work Item State
Event Code: WMSelectedWorkItem

In this paticular case it is left to the implementation to realize a state change of the Work Item when a
WMGetWorkItem operation is invoked.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 68 of 68
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.5 WMCompleteWorkItem

NAME

WMCompleteWorkItem - Tell the WFM Engine that this work item has been completed.

DESCRIPTION

This command allows a workflow participant to tell the WFM Engine that a work item has been completed.

To change a work item's attributes, multiple calls to WMAssignWorkItemAttribute.

WMTErrRetType WMCompleteWorkItem (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the work item identification for this request.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM

REQUIREMENTS

None

RATIONALE FOR API

WFM products implement various ways to determine when an activity is complete. The use of the API may
range from just a successful/unsuccessful indication to placing values in the completion state which might
cause the WFM Engine to select a future model navigation path from among many.

Typically, a work item will correspond to an activity instance. However the API should allow the existence
of multiple work items per activity, executed one at a time. So completion of a work item does not
necessarily mean that all work for an activity instance is completed. Completion of a work item could
trigger the start of the next work item that corresponds to that activity instance. The Workflow Engine will
determine the next work item based on the process definition.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Work Item State
Event Code: WMCompletedWorkItem

6.6.6 WMOpenWorkitemStatesList

NAME

WMOpenWorkitemStatesList - Specifies and opens the query to produce the list of states of workitem
that match the filter criterion.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 69 of 69
Copyright © 1993, 1999, The Workflow Management Coalition

DESCRIPTION

This command will return a query handle for a list of states for a workitem. The command will also return,
optionally, the total count of definitions available. If the count is requested and the implementation does
not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available states of the workitem that match the filter
criterion, in order to offer this list to the application user. For example, workitems can be in states such as
disabled (thus disallowing temporarily the creation of new process definitions), or enabled (thus allowing
again the creation of new process definitions based on the named definition). If pworkitem_state_filter
is NULL, then the function, with the corresponding fetch calls will return the list of ALL states available for
the definition.

WMTErrRetType WMOpenWorkitemStatesList (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pworkitem_id,
in WMTPFilter pworkitem_state_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTUInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pworkitem_id Pointer to a structure containing the unique workitem ID.
pworkitem_state_filter Filter associated with the workitem state.
count_flag Boolean flag that indicates if the total count of process definition states

should be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of states for this process definition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 70 of 70
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.7 WMFetchWorkitemState

NAME

WMFetchWorkitemState - Returns the next workitem state, from the list of states of the workitem that
match the filter criterion.

DESCRIPTION

This command returns a workitem state. This fetch function will return subsequent workitem states after
every call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA.

WMTErrRetType WMFetchWorkitemState (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPProcDefState pworkitem_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenWorkitemStatesList query command.
pworkitem_state Pointer to a buffer area provided by the client application where the state name

will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 71 of 71
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.8 WMCloseWorkitemStatesList

NAME

WMCloseWorkitemStatesList - Closes the query for workitem states.

DESCRIPTION

WMTErrRetType WMCloseWorkitemStatesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenWorkitemStatesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 72 of 72
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.9 WMChangeWorkitemState

NAME

WMChangeWorkitemState - Changes the state of the named workitem.

DESCRIPTION

This command is defined to allow a workitem to be changed temporarily to a specific state such as
notRunning, or running. See Appendix G for a discussion of states.

WMTErrRetType WMChangeWorkitemState (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pworkitem_id,
in WMTPProcDefState pworkitem_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pworitem_id Pointer to a structure containing a unique workitem ID.
pworkitem_state Pointer to a structure that contains the name of the state to change the

workitem to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each workitem must have a unique ID within an administrative scope.

RATIONALE FOR API

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Work Item State
Event Code: WMChangedWorkItemState

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 73 of 73
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.10 WMReassignWorkItem

NAME

WMReassignWorkItem

DESCRIPTION

This command allows a work item from one workflow participant’s worklist to be reassigned to another
workflow participant’s worklist.

(Note: Possible future releases of the API specification may provide for an entire worklist to be reassigned
in total.)

WMTErrRetType WMReassignWorkItem (
in WMTPSessionHandle psession_handle,
in WMTPWflParticipant psource_user,
in WMTPWflParticipant ptarget_user,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
psource_user The identification of a workflow participant from which work is to be reassigned.
ptarget_user The identification of the workflow participant to whom work is to be assigned.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the work item identification being reassigned.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM
WM_INVALID_SOURCE_USER
WM_INVALID_TARGET_USER

REQUIREMENTS

The workflow participant making the reassignment request has the authority to do so.

RATIONALE FOR API

A workflow participant having work assigned may be away from work for various reasons and the work
must be given to another workflow participant to get it accomplished. A WFM Engine may direct all work
items to a single worklist (departmental worklist for example).

With the reassignment API, workflow participants in that department may reassign work to themselves after
they finish a current work item and become available for more work. This creates a possible de facto
people load balancing scheme.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign / Reassign Work Item
Event Code: WMReassignedWorkItem

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 74 of 74
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.11 WMOpenWorkItemAttributesList

NAME

WMOpenWorkItemAttributesList - Specifies and opens the query to produce the list of work item
attributes that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of attributes for a work item. The command will also
return, optionally, the total count of attributes available. If the count is requested and the implementation
does not support it, the command will return a pcount value of -1.

One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available attributes that can be assigned to the work item,
in order to offer this list to the application user. Attribute values can be obtained as well provided that a
buffer of enough size is passed in the fetch call. Individual attribute values can also be retrieved with the
WMGetWorkItemAttributeValue call. If pwork_item_attr_filter is NULL, then the function, with
the corresponding fetch calls will return the list of ALL attributes available for the work item.

WMTErrRetType WMOpenWorkItemAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id,
in WMTPFilter pwork_item_attr_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the unique work item ID.
pwork_item_attr_filter Filter associated with the work item attributes.
count_flag Boolean flag that indicates if the total count of work item attributes should be

returned.
pquery_handle Pointer to a structure containing a unique query information.
Pcount Total number of attributes for this work item.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 75 of 75
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.12 WMFetchWorkItemAttribute

NAME

WMFetchWorkItemAttribute - Returns the next work item attribute from the list of work item attributes
that match the filter criterion.

DESCRIPTION

This command returns a work item attribute. This fetch function will return subsequent work item attributes
after every call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA. The
fetch function will return the attribute value as well in a buffer specified in the call. If buffer_size is
NULL then the attribute value will not be returned. If buffer_size is not large enough to hold the attribute
value then the function will return as much of the attribute value as can be fit in the buffer. The proper
length of the attribute value is available in the attribute_length field. The application can compare the
attribute_length with the buffer_size to determine if the full value was returned.

WMTErrRetType WMFetchWorkItemAttribute (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenWorkItemAttributesList query command.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed.
buffer_size Size of the buffer.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 76 of 76
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.13 WMCloseWorkItemAttributesList

NAME

WMCloseWorkItemAttributesList - Closes the query for work item attributes.

DESCRIPTION

WMTErrRetType WMCloseWorkItemAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenWorkItemAttributesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 77 of 77
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.14 WMGetWorkItemAttributeValue

NAME

WMGetWorkItemAttributeValue - Returns the value, type and length of a work item attribute specified
by the pwork_item_id parameter.

DESCRIPTION

This command will return the value of a work item attribute in the buffer specified in the call.

WMTErrRetType WMGetWorkItemAttributeValue (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id,
in WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
out WMTPText pattribute_value,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the unique work item ID.
pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the

attribute value will be placed.
buffer_size Size of the buffer to be filled.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ATTRIBUTE
WM_INSUFFICIENT_BUFFER_SIZE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 78 of 78
Copyright © 1993, 1999, The Workflow Management Coalition

6.6.15 WMAssignWorkItemAttribute

NAME

WMAssignWorkItemAttribute - Assign the proper attribute to a work item.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, to change an attribute or to change the value of
an attribute of a work item.

WMTErrRetType WMAssignWorkItemAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.
pwork_item_id Pointer to a structure containing the work item ID for which an attribute will be

added or changed.
pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign Work Item Attributes
Event Code: WMAssignedWorkItemAttributes

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 79 of 79
Copyright © 1993, 1999, The Workflow Management Coalition

6.7 WAPI Administration Functions

The set of administration functions provide the functionality needed to perform administration and
maintenance functions of a workflow system. This set includes the minimal services contemplated
for this client application interface. The set includes functions to change state of a set of process
or activity instances, terminating and aborting process instances, and for assigning attributes to a
set of process and activity instances.

6.7.1 WMChangeProcessInstancesState

NAME

WMChangeProcessInstancesState - Change the state of the instances of the named process definition that
match the specified filter criterion.

DESCRIPTION

This command is defined to allow a set of process instances in the named process definition to move to a
specific new state.

Execution of this command will cause a set of process instances of the named process definition change
their state. If the filter pointer pproc_inst_filter is NULL, then the command is applied to all process
instances. Specific state names and their semantics are dependent upon the particular WFM Engine
implementation.

This call will be executed when a set of process instances of a process must have a new state, such as
suspended, disabled or enabled. Specific state names and semantics must be included in implementation
documentation.

Since this command operates on a set of process instances of a named process definition, it is expected to
be issued by a person having the authority to do so. The scope of this operation may be different
depending on the vendor's implementation.

WMTErrRetType WMChangeProcessInstancesState (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPFilter pproc_inst_filter,
in WMTPProcInstState pproc_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
Pproc_def_id Pointer to a structure containing a unique process definition ID.
Pproc_inst_filter Pointer to a structure containing the filter information for this request.
Pproc_inst_state An ID that indicates the process state that you want to change to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_FILTER
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique ID within an administrative scope.
Each process definition must have a unique ID within an administrative scope.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 80 of 80
Copyright © 1993, 1999, The Workflow Management Coalition

RATIONALE FOR API

This API allows the possible intervention of a process administrator in a running process. This might be for
the purpose of changing the process definition and having all subsequently created instances reflect the new
definition. It provides the capability of halting running process instances while changes in roles, activities,
etc. are put into effect. It allows instances to be stopped while problem determination can be done on a
malfunctioning process.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process / Subprocess Instance State
Event Code: WMChangedProcessInstanceState

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 81 of 81
Copyright © 1993, 1999, The Workflow Management Coalition

6.7.2 WMChangeActivityInstancesState

NAME

WMChangeActivityInstancesState - Change the state of the activity instances of a particular name
associated to a process definition that match the specified filter criterion.

DESCRIPTION

This command directs a WFM Engine to change the state of the named activity for a set of activity
instances. It is assumed that a person who can change the state of the set of activity instances corresponding
to a process definition has special authorization to do so. If the implementation supports a state such as
suspended, and resumed or in-progress, then the functions for suspend and resume are implemented as state
change calls. If the filter pointer pact_inst_filter is NULL, then the command is applied to all activity
instances of the given activity definition.

WMTErrRetType WMChangeActivityInstancesState (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPActivityID pactivity_def_id,
in WMTPFilter pact_inst_filter,
in WMTPActivityInstState pactivity_inst_state)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
Pproc_def_id Pointer to a structure containing a unique process definition ID.
Pactivity_def_id Pointer to the activity definition ID.
pact_inst_filter Pointer to a structure containing the filter information for this request.
Pactivity_inst_state An ID that indicates the activity instance state that you want to change to.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_ACTIVITY_NAME
WM_INVALID_FILTER
WM_INVALID_STATE
WM_TRANSITION_NOT_ALLOWED

REQUIREMENTS

Each process definition must have a unique ID within an administrative scope.
Each activity must have a unique ID within a process definition.

RATIONALE FOR API

A workflow participant may wish to modify the states of activity instances of a particular activity. Other
situations might involve the malfunctioning of an application associated with an activity. A process
containing the activity may be a frequently used one, and it might be issuing dumps each time it is invoked.
The use of this API would allow the calling of the application to be stopped while remedial measures were
taken.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Activity Instance State
Event Code: WMChangedActivityInstanceState

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 82 of 82
Copyright © 1993, 1999, The Workflow Management Coalition

6.7.3 WMTerminateProcessInstances

NAME

WMTerminateProcessInstances - Terminate the process instances of the named process definition that
match the specified filter criterion.

DESCRIPTION

This command provides the capability of terminating a set of process instances associated with a process
definition. Execution of this command will cause a set of process instances of the named process definition
to be terminated. If the filter pointer pproc_inst_filter is NULL, then the command is applied to all
process instances.

WMTErrRetType WMTerminateProcessInstances (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPFilter pproc_inst_filter)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
Pproc_def_id Pointer to a structure containing the process definition for which all process

instances are to be terminated.
Pproc_inst_filter Pointer to a structure containing the filter information for this request.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_FILTER

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process / Subprocess Instance State
Event Code: WMTerminatedProcessInstance

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 83 of 83
Copyright © 1993, 1999, The Workflow Management Coalition

6.7.4 WMAssignProcessInstancesAttribute

NAME

WMAssignProcessInstancesAttribute - Assign the proper attribute to a set of process instances within a
process definition that match the specific filter criterion.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, or to change an attribute or to change the values
of an attribute of a set of process instances within a named process definition.

This command changes the value of the attribute of a process instance. These attributes of process
instances are of the kind called Process Control or Process Relevant Data.

WMTErrRetType WMAssignProcessInstancesAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPFilter pproc_inst_filter,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

Psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing the process definition ID for which the attribute

of all process instances will be changed.
pproc_inst_filter Pointer to a structure containing the filter information for this request.
Ppattribute_name Pointer to the name of the attribute.
Attribute_type Type of the attribute.
Attribute_length Length of the attribute value.
Pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_FILTER
WM_INVALID_ATTRIBUTE

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Instance Attribute

6.7.5 Event Code: WMAssignedProcessInstanceAttributes

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 84 of 84
Copyright © 1993, 1999, The Workflow Management Coalition

WMAssignActivityInstancesAttribute

NAME

WMAssignActivityInstancesAttribute - Assign the proper attribute to set of activity instances within a
process definition that match the specific filter criterion.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, or to change an attribute or to change the value
of an attribute of a set of activity instances within a named process definition. These attributes of activity
instances are of the kind called Process Control or Process Relevant Data. If pact_inst_filter is NULL,
then the function is applied to ALL accessible activity instances of the given activity definition.

WMTErrRetType WMAssignActivityInstancesAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPActivityID pactivity_def_id,
in WMTPFilter pact_inst_filter,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing the process definition ID. In the case that the

attribute will be changed for all activity instances that correspond to the process
definition. This parameter will be NULL otherwise.

pactivity_def_id Pointer to a structure containing the activity definition identification for which
the attribute will be assigned.

pact_inst_filter Pointer to a structure containing the filter information for this request.
pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_ACTIVITY_NAME
WM_INVALID_FILTER
WM_INVALID_ATTRIBUTE

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign Activity Instance Attributes
Event Code: WMAssignedActivityInstanceAttributes

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 85 of 85
Copyright © 1993, 1999, The Workflow Management Coalition

6.7.6 WMAbortProcessInstances

NAME

WMAbortProcessInstances - Abort the set of process instances that correspond to the named process
definition, that match the specific filter criterion, regardless of its state.

DESCRIPTION

This command allows a set of process instances of a process definition to be aborted. All current activities
within these process instances will be stopped when possible. The instances will be terminated. If
pproc_inst_filter is NULL, then the function will be applied to ALL accessible process instances.

WMTErrRetType WMAbortProcessInstances (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPFilter pproc_inst_filter)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_def_id Pointer to a structure containing the process definition for who all processes

instances is being aborted.
pproc_inst_filter Pointer to a structure containing the filter information for this request.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WM_INVALID_FILTER

REQUIREMENTS

None

RATIONALE FOR API

This command is for use in catastrophic circumstances where nothing except clearing the process
away can be done.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Instance State
Event Code: WMAbortedProcessInstance

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 86 of 86
Copyright © 1993, 1999, The Workflow Management Coalition

6.7.7 WMAbortProcessInstance

NAME

WMAbortProcessInstance - Abort the process instance specified regardless of its state.

DESCRIPTION

This command allows a process instance to be aborted. All current activities within the process
instance will be stopped when possible. The instance will be terminated.

WMTErrRetType WMAbortProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the process instance being aborted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE

REQUIREMENTS

None

RATIONALE FOR API

This command is for use in catastrophic circumstances where nothing except clearing the process away can
be done.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process / Subprocess Instance State
Event Code: WMAbortedProcessInstance

6.8 WAPI Application Invocation Functions

The set of application interface functions provides services to Tool-Agents, to invoke and control
applications associated with specific work items.

The Invoked Application Interface defines an API set, which is highly recommended to be used by
Workflow System components (engine and client applications) to control specialized application drivers
called Tool Agents. These Tool Agents finally start up and stop applications, pass workflow and application
relevant information to and from the application and control the application’s run level status.
Therefore, the Invoked Application Interface WAPIs are only directed against a Tool Agent. Nevertheless,
additional workflow information could be requested by an application via the Tool Agent using standard
WAPI functions. As the Invoked Application Interface should handle bi-directional requests (requests to
and from applications), it depends on the interfaces and architecture of applications how to interact with an
Tool Agent.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 87 of 87
Copyright © 1993, 1999, The Workflow Management Coalition

This interface will allow the request and update of application data and more run-time relevant
functionalities.

Different invokation technologies

Standardized
API’s

Tool Agents

Workflow System
(Workflow Engine and/or

Worklist Handler

Interface 3 - API

Invoked applications Invoked applications

Workflow enabled
applications

Fig. 1: The localization of the Invoking Application Interface.

The Workflow System itself has to know about the installed Tool Agents. The basic architecture of Tool
Agents could be compared with a driver - interface, i.e. ODBC, etc..
Within this interface definition, no further communication mechanism between the Tool Agents and the
Workflow System is necessary.

6.8.1 WMTAConnect() & WMTADisconnect()

DESCRIPTION

These commands create and terminate connections to Tool Agent interfaces. The commands are already
defined in section “WAPI Connection Functions”. Applications might require login procedures, therefore
user authentication should be passed to a Tool Agent to provide single-login mechanisms.

Note: The value for engine_name in WMTConnectInfo represents the name of the Tool Agent
implementation as defined in the process definition.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 88 of 88
Copyright © 1993, 1999, The Workflow Management Coalition

6.8.2 WMTAInvokeApplication()

NAME

WMTAInvokeApplication - Force a Tool Agent to start or activate a specific application.

DESCRIPTION

The workflow application or engine activates a specified application associated with a work item by calling
this Tool Agent API. Applications could be already active (started) or have to be invoked (started) by the
Tool Agent. Invoking an application always includes passing of additional options like application
parameters and modes.

int WMTAInvokeApplication (
in int tool_agent_handle,
in string application_name,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id,
in WMTPAttributeList pattribute_list,
in int app_mode)

Argument Name Description
tool_agent_handle This handle represents one connection to a specific Tool Agent

application_name This parameter represents the name of the executable file or component. The
application name must be passed without the path name. (The Tool Agent
implemetation and configuration has to handle the local configuration.)

pproc_inst_id Process instance, to identify the relation between the application and a process
instance. This ID allows the System to reference to a specific application handle of the
Tool Agent.

pwork_item_id Work Item associated with invoked application

pattribute_list Pointer to a list of parameters and attributes which are required by the application.
These parameters could be either application relevant, or dynamic, or workflow
relevant data. (e.g. filename, record identifer, etc.)

app_mode Represents a possible application mode like “CREATE”, “UPDATE”, “READ-
ONLY”, ”PRINT”, etc..

ERROR RETURN VALUE

WM_SUCCESS
WM_APPLICATION_NOT_STARTED
WM_APPLICATION_NOT_DEFINED
WM_APPLICATION_BUSY

REQUIREMENTS

None

RATIONALE FOR API

This command invokes a specific application associated with a work item.A Tool Agent might control one
or multiple applications, which have to be started or activated. Also, an application have to be started in a
specific mode like “open” or “update”.

AUDIT INFORMATION

None

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 89 of 89
Copyright © 1993, 1999, The Workflow Management Coalition

6.8.3 WMTARequestAppStatus()

NAME

WMTARequestAppStatus - allows the Workflow System to check for open applications and their status
(running, pending, etc.).

DESCRIPTION

WMTARequestAppStatus() defines how the Workflow System has to check the status of an application and
retrieves workflow relevant data from the application. To retrieve workflow relevant data from an invoked
application, the workflow application or engine has to request the application status and information from a
Tool Agent. Due to some asynchronous requirements of integrated applications, Tool Agents can request
additional information by use of other WAPI interfaces.

int WMTARequestAppStatus (
in WMTInt32 tool_agent_handle,
in WMTPProcInstID proc_inst_id,
in WMTPWorkItemID pwork_item_id,
out WMTInt32 app_status,

 out WMTPAttributeList WFRelevantData)

Argument Name Description
tool_agent_handle This handle represents one specific Tool Agent

Pproc_inst_id Workflow relevant data belong to this process instance and should be updated after the
application is finished.

Pwork_item_id Work Item associated with invoked application.

app_status Information about the invoked application. (I.e. “RUNNING”, “ACTIVE”,
“WAITING”, “TERMINATED”, “FINISHED”, etc.)

WFRelevantData A list or structure of workflow relevant data, which could be accessed by the Tool
Agent mechanisms.

ERROR RETURN VALUE

WM_SUCCESS
WM_APPLICATION_BUSY
WM_INVALID_TOOL_AGENT_HANDLE
WM_INVALID_WORKITEM
WM_INVALID_PROCESS_INSTANCE

REQUIREMENTS

None

RATIONALE FOR API

To check the status of an active work item this command might be used to control the status of an invoked
application.

AUDIT INFORMATION

None

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 90 of 90
Copyright © 1993, 1999, The Workflow Management Coalition

6.8.4 WMTATerminateApp()

NAME

WMTATerminateApp - Forces the Tool Agent to terminate an application.

DESCRIPTION

This API allows the Workflow System to stop an application, which relates to a specific process instance.
Also, an application can be terminated by any other event. Therefore, WMTerminateApp is not mandatory
within the application control APIs, but it allows the ToolAgent to free application relevant information.

int WMTATerminateApp (
in WMTInt32 tool_agent_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id)

Argument Name Description
tool_agent_handle This handle represents one specific Tool Agent

pproc_inst_id Workflow relevant data belong to this process instance and should be updated after the
application is finished.

pwork_item_id Work Item associated with invoked application.

ERROR RETURN VALUE

WM_SUCCESS
WM_APPLICATION_NOT STOPPED
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM
WM_APPLICATION_BUSY

REQUIREMENTS

None

RATIONALE FOR API

This command is to close a connection to an application and to stop it. It might be used before system
shutdown, or to terminate invoked applications to allow better control of system resources used by
integrated applications.

AUDIT INFORMATION

None

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 91 of 91
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 92 of 92
Copyright © 1993, 1999, The Workflow Management Coalition

7. Appendix A: Future Work

7.1 Additional API Areas

The WFM Coalition API specification work will address the following areas. It will be determined whether
API calls should be created for these areas or whether they are the sole domain of particular WFM product
implementations.

7.1.1 WFM Data API calls

The types of data that applications need to manipulate through this API specification are process control
data, process relevant data, and application data. The current specification addresses the access to these data
through the definition and manipulation of attributes of processes, activities and work items. It is currently
believed that some additional new API calls or parameter additions to existing API calls will be required
for complete data manipulation.

7.1.2 Ad hoc activities

In a future release of API specifications, the API working group will consider the functionality to allow
applications to add activities to an instance of a process that are not part of its definition. These ad-hoc
additions will be done on an instance basis.

7.1.3 Administration and Maintenance

The API working group believes that the functions in this area correspond to interface 5. Services should
include functions for:

• Purging
• Backup
• Archiving
• Download and Upload instances (for remote users)

7.1.4 Names and Roles

The API working group believes that a Workflow Engine should also provide services for definition,
assignment, mapping and maintenance of roles and names (identities). The working group also believes
that these services should be provided through interface 5 as well.

7.2 Additional Issues

The WFM Coalition API specification work will be expanded to take care of the following issues for future
releases.

7.2.1 Error reporting and control

All WAPI function calls have a uniform error return datatype. This data type is shared among all API calls.
This specification assumes that the Coalition will specify a subset of the main error return codes, leaving for
vendor specific implementation the remaining main error return codes and the set of subcode codes to
provide extensibility and specialization of error codes. (See section WAPI Data Types, and WAPI Error
Return Codes sections).

7.2.2 Synchpoint processing

Synchpoint processing deals with recoverability. The API working group believes that this area is
extremely important to WFM exploiters. However, it is also believed that it would be one of the more

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 93 of 93
Copyright © 1993, 1999, The Workflow Management Coalition

difficult areas to deal with in terms of member agreement. Work in this area is being deferred to the second
release of the API specifications.

7.2.3 Security

The current version of the WFM API specification does not include any specific requirements or provisions
for security mechanisms, except for the inclusion of user password in the WMTConnectInfo structure.
Implementation of security mechanisms are left up to the specific implementations.

7.2.4 Locking

The current version of the WFM API specification does not include any specific requirements or provisions
for locking mechanisms. Implementation of locking mechanisms are left up to the specific
implementations.

7.2.5 Process Integrity

The current version of the WFM API specification does not include any specific requirements or provisions
for mechanisms to guarantee process integrity. Implementation of process integrity mechanisms are left up
to the specific implementations.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 94 of 94
Copyright © 1993, 1999, The Workflow Management Coalition

8. Appendix B: Object Bindings
This chapter describes the object bindings for the WAPI functions described in this document1. Bindings
are defined for OLE and in terms of OMG IDL. Both bindings realize a common objet model that is
described in the next section; the rest of the chapter describes the binding specifications.

8.1 Abstract Object Definition

The following diagram shows the primary objects used in the definition of the Workflow Application
Client interface.

Work Item
Process
Instance

Activity
Instance

Process
Definition

comprisesrealizes executes

Workflow
Server

manages manages

manages manages

The WorkflowServer provides the context for communication with the Workflow Enactment Service. It
allows for filtered queries on objects owned by the specific Enactment Service. An executable workflow
model itself is represented by the ProcessDefinition ; the Process Definition serves as a Factory for
creating instances of the Workflow Model that are enacted by the Workflow Management System. To
execute a specific process, a ProcessInstance of the ProcessDefinition is created. During execution of the
ProcessInstance, the Enactment Service creates instances (ActivityInstance) of the Activity Definitions
contained in the Process Definition. Assignment of an activity instance to a participant creates a WorkItem.

The next diagram shows the auxiliary constructs that are used to complete the Object Model.

1 The new Process Definition functions are not covered here at the moment.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 95 of 95
Copyright © 1993, 1999, The Workflow Management Coalition

Work Item
Process
Instance

Activity
Instance

Process
Definition

Workflow
Object

Collection

qualifies

contains

Workflow
Server

Filter

contains
contains

contains

Attribute
has

has

has

has

owns

A set of standardized Attributes is defined for each of the objects - attributes specific to a particular
Enactment Service or user-defined attributes that determine the specifics of a Workflow object in a
particular Workflow Model. Access to filtered lists of objects owned by the Enactment Service is managed
via Collection-type interfaces; Filter objects support definition of selection criteria for those lists.
Workflow Object Collections are realized as OLE-Collections in the OLE binding; in the OMG IDL
binding an Iterator-type interface is defined for each of the fundamental Workflow Object interfaces.

8.1.1 Mapping WAPI to the OLE and IDL Bindings

The following table describes how the ingredients of the Common Object Model described above map to
the WAPI constructs defined in this specification.

WAPI Element OLE Object IDL Interface
WMTSession Server ApplicationClientServer
WMTFilter Filter Filter
WMTQueryHandle OLE-Collection ProcessDefinitionsList

ProcessInstancesList
ActivityInstancesList
WorkList
AttributeList

WMTProcessDefinition ProcessDefinition ProcessDefinition
WMTProcessInstance ProcessInstance ProcessInstance
WMTActivityInstance ActivityInstance ActivityInstance
WMTWorkItem WorkItem WorkItem
WMTAttributeName
WMTAttributeType
WMTAttributeLength
WMTAttributeValue

Attribute Attribute

WMTEntity of type Process
Activity

ActivityDefinition

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 96 of 96
Copyright © 1993, 1999, The Workflow Management Coalition

WMTEntity of type Transition
Information

TransitionDefinition

WMTEntity of type Application
Definition

ApplicationDefinition

WMTEntity of type Participant
Definition

ParticipantDefinition

WMTEntity of type Process
Relevant Data

DataDefinition

8.2 OLE Automation Binding

This appendix describes the OLE automation binding for the Workflow Management Coalition Interface 2
(WAPI2). It is based on:

• the WAPI specified in this document, and
• Microsoft Visual Basic 4.0, Professional Features, Creating OLE Servers, Chapter 3, Standards and

Guidelines

This binding has two goals:

1. To accurately reflect the functionality specified by WAPI2.
2. To conform to the standards and guidelines for OLE automation interfaces.

Note that this version of the binding does not yet include the “entitiy” functions.

8.2.1 Expressing WAPI2 as an OLE Automation Interface

WAPI2 is defined in terms of data structures and functions. An OLE automation interface consists of object
classes, each with properties and methods. The OLE automation binding for WAPI2 was derived using the
following rules:

1. Define an OLE automation object class for each WAPI2 data structure. However, if a WAPI2 data
structure consists of a single WMTText field, use the OLE automation String class.

2. Define a read-only OLE automation property for each field in each WAPI2 data structure, on the object
class corresponding to the data structure.

3. For each WAPI2 function, define a method on the appropriate object class. Omit the session handle
parameter from the methods (except for the Server methods).

4. Use OLE automation collections for each Open/Fetch/Close...List combination of functions, and for
fields in data structures that hold multiple values (e.g. participants).

5. Errors are reported via exceptions.

8.2.1.1 Object Classes
The OLE automation binding defines an OLE automation object (class) for each WAPI2 data structure. For
example, WAPI2 defines a process instance data structure as follows:

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 97 of 97
Copyright © 1993, 1999, The Workflow Management Coalition

typedef struct
{

// This is the minimum list of elements at this time. Future versions to provide
extensibility for this structure.

WMTText process_name[NAME_STRING_SIZE];
WMTProcInstID proc_inst_id;
WMTProcDefID proc_def_id;
WMTProcInstState state;
WMTInt32 priority;
WMTText data_reference[DATA_REFERENCE_SIZE];

// private element containing vendor specific
information

WMTWflParticipant proc_participants[20];
//up to 20 63 character long participant identifiers

} WMTProcInst;

The OLE automation binding defines a ProcessInstance object class with properites Name, ID,
ProcessDefinitionID, State, Priority, DataReference, and Participants. This ProcessInstance object class
defines Start and Terminate methods, corresponding to the WMStartProcess and
WMTerminateProcessInstance WAPI2 functions.

The table below lists the object classes in the WAPI2 OLE automation binding, and the corresponding
WAPI2 data structures. Note that there are exceptions to the rules stated above. There is no
ConnectionInfo object class - the information is passed as separate parameters to the Connect method of the
Server class. There is an Attribute object class - its properties are passed as separate parameters in the
WAPI2 attribute functions.

OLE Automation Object WAPI 2 Data Type
Server WMTSessionHandle

WMTConnectInfo
Filter WMTFilter
Collection WMTQueryHandle
ProcessDefinition WMTProcDefID
ProcessInstance WMTProcInst
ActivityInstance WMTActivityInst
WorkItem WMTWorkItem
Attribute
String WMTWflParticipant

WMTProcDefState
WMTProcInstState

The table below lists the entities in the Workflow Process Definition Language (WPDL), and the
corresponding WAPI2 OLE automation binding objects.

OLE Automation Object WPDL Entity
ProcessDefinition Workflow Process Definition
ActivityDefinition Workflow Process Activity
TransitionDefinition Transition Information
ParticipantDefinition Workflow Participant Definition
ApplicationDefinition Workflow Application Definition
DataDefinition Workflow Process Relevant Data

8.2.1.2 Object Hierarchy
The object classes in an OLE automation interface are organized into an object hierarchy. This is not an
inheritance hierarchy based on “is a” relationships. Rather, it is a navigational hierarchy that “organizes the
objects in a way that makes programming easier”. The top level objects in the hierarchy are “externally

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 98 of 98
Copyright © 1993, 1999, The Workflow Management Coalition

creatable”, which means that a program can obtain such objects directly. All other objects in the OLE
automation interface are obtained indirectly, through the properties and methods of the top level objects.
Here is the object hierarchy for the WAPI2 OLE automation interface:

Server
Process Definitions

States
ActivityDefinitions
TransitionDefinitions
ParticipantDefinitions
ApplicationDefinitions
ProcessDataDefinitions

Process Instances
Attributes
Participants
States

Activity Instances
Attributes
Participants
States

Work Items
Attributes
Participant

ParticipantDefinitions
ApplicationDefinitions

Filter

WAPI2 requires a program to first obtain a session handle, and then use it to get process, activity, and work
item handles. In the OLE automation binding, Serverand Filter are the top level objects. The Server object
class has methods for listing process definitions, process instances, activity instances, and work items.

8.2.1.3 Collections and Queries
WAPI2 supports several retrieval operations that return multiple values:

• a list of process definitions, process instances, activity instance, or work items,
• the states of a process definition, process instance, or activity instance
• the attributes of a process instance, activity instance, or work item

For each such retrieval operation, WAPI2 defines three functions:

• WMOpen...List
• WMFetch...
• WMClose...List

The open functions take a filter parameter. The fetch functions are used to iterate through the values
retrieved.

OLE automation uses the Collection object class to navigate such one-to-many relationships in the object
hierarchy. The Server object class has list methods which take a Filter object as a parameter and return a
collection of ProcessDefinition, ProcessInstance, ActivityInstance, or WorkItem objects. The
ProcessDefinition, ProcessInstance, and ActivityInstance object classes have a States property whose value
is a collection of states. . The ProcessInstance, ActivityInstance, and WorkItem object classes have an
Attributes property whose value is a collection of attributes. These properties have a Filter parameter.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 99 of 99
Copyright © 1993, 1999, The Workflow Management Coalition

The Collection object class has a Count property (the number of elements in the collection) and provides
methods for iterating through its elements. For example, here is the VBA code to populate a list box with a
user’s work items:

Dim mySession As Session
Dim myWorkList As Filter
Dim myWorkItem As WorkItem

Set mySession = CreateObject(“WAPI2.Session”)
mySession.Connect(...)

For Each myWorkItem In Session.ListWorkItems(myWorkList)
ListBox.AddItem myWorkItem.Name

Next myWorkItem

The ProcessDefinition, ProcessInstance, ActivityInstance, and WorkItem classes each have collection-
valued properties for their states, attributes, and participants. The elements of the state and participant
collections are strings. The elements of the attribute collections are Attribute objects, which have two
properties: Name and Value. The Value property is expressed as an OLE automation Variant, which
provides methods for determining its data type and length.

8.2.1.4 Exceptions
OLE automation supports exceptions. OLE automation servers can report errors by raising an exception
rather than returning an error code. This allows chaining calls to an OLE automation interface in a single
expression. For example, the following expression

WorkItem.ProcessInstance.ProcessDefinition.Name

makes three calls to the OLE automation interface to return the name of the process definition for the
process instance that contains the work item. These expressions commonly appear in programs or macros
that call an OLE automation interface. Any one of the calls could encounter an error, which would be
reported to the calling program through an exception.

The OLE automation binding for WAPI2 uses exceptions to report errors. The exception object carries a
text description of the error with it. The Server object also has ErrorCode and ErrorSubCode properties.
When a program calls the WAPI2 OLE automation interface, and the server encounters an error, it sets the
Server properties to the error codes in the WMTErrRetType data structure, and raises an exception.

8.2.2 Attributes

Most workflow objects can have a collection of attributes, where each attribute has a name, data type, and
value. The WAPI C binding provides functions for

• iterating through the attributes of an object: WMOpen…AttributesList, WMFetch…Attribute,
WMClose…AttributesList, and

• getting and setting attribute values: WMGet…AttributeValue, WMAssign…AttributeValue.

In the OLE binding, each object has an Attributes property whose value is a collection of Attribute objects.
The OLE collection object provides methods for iterating through the attributes of an object. An Attribute
object has name, type and value properties corresponding to the attribute_name, attribute_type,
attribute_length, and attribute_value parameters to the WMGet…AttributeValue function. The
Attributes collection is indexed by attribute name. Getting the value of an attribute object has the same
effect as calling WMGet…AttributeValue; setting the value of an attribute object has the same effect as
calling WMAssign…AtributeValue. For example, the following expression

activity.Attributes(“Size”).Value

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 100 of 100
Copyright © 1993, 1999, The Workflow Management Coalition

evaluates to the value of the “Size” attribute of an activity object (referenced by the activity variable), and

activity.Attributes(“Size”).Value = 15

updates the “Size” attribute of an activity object. The data type of the Value property is the OLE
automation Variant type. This data type provides functions for determining the data type of its value, and
converting its value to a basic data type.

8.2.3 Server

The Server object class corresponds to the WMTSessionHandle data type. Server objects are externally
creatable. A program must successfully call the Connect method on a Server object before it can be used to
access other objects.

8.2.3.1 Properties
A Server object has the following properties:

Name Type Description
Engine String pconnect_info.engine_name
ErrorCode Integer WMTErrRetType.main_code
ErrorSubCode Integer WMTErrRetType.sub_code
Scope String pconnect_info.scope

These properties are read-only. They are set when the OLE automation interface raises an exception.

8.2.3.2 Methods
A Server object has the following methods:

Signature Description
Connect
 in String User
 in String Password

WMConnect

ProcessDefinition CreateProcessDefinition WMCreateProcessDefinition
DeleteProcessDefinition
 in ProcessDefinition ProcDef

WMDeleteProcessDefinition

Disconnect WMDisconnect
Collection ListProcessDefinitions
 in Filter ProcDefFilter

WMOpenProcessDefinitionsList

Collection ListProcessInstances
 in Filter ProcInstFilter

WMOpenProcessInstancesList

ProcessInstance GetProcessInstance
 in String ProcInstID

WMGetProcessInstance

Collection ListActivityInstances
 in Filter ActivityInstFilter

WMOpenActivityInstancesList

ActivityInstance GetActivityInstance
 in String ProcInstID
 in String ActivityInstID

WMGetActivityInstance

Collection ListWorkItems
 in Filter WorkItemFilter

WMOpenWorkItemsList

WorkItem GetWorkItem
 in String ProcInstID
 in String WorkItemID

WMGetWorkItem

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 101 of 101
Copyright © 1993, 1999, The Workflow Management Coalition

ApplicationDefinition
CreateApplicationDefinition
 in String Name

WMCreateEntity

DeleteApplicationDefinition WMDeleteEntity
ParticipantDefinition
CreateParticipantDefinition
 in Sting Name

WMCreateEntity

DeleteParticipantDefinition WMDeleteEntity

8.2.3.3 Connect
This method is the binding for the WMConnect function. Note that the engine name and scope
parameters to the WMConnect function are omitted here. This information is encoded in the
parameters to the call to the OLE function (CreateObject or GetObject) which returns the server
object.

Connect (
in String User,
in String Password)

Argument Description (WMConnect Argument)

User pconnect_info.user_identification
Password pconnect_info.password

8.2.3.4 CreateProcessDefinition
This method is the binding for the WMCreateProcessDefinition function.

ProcessDefinition CreateProcessDefinition ()

Argument Description (WMCreateProcessInstance Argument)

ProcessInstance pproc_def_id

8.2.3.5 DeleteProcessDefinition
This method is the binding for the WMDeleteDefinition function.

DeleteProcessDefinition (
in ProcessDefinition ProcDef)

Argument Description (WMDeleteProcessDefinition Argument)

ProcDef pproc_def_id

8.2.3.6 WMDisconnect
This method is the binding for the WMDisconnect function.

Disconnect ()

8.2.3.7 ListProcessDefinitions
This method is the binding for the WMOpenProcessDefinitionsList function.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 102 of 102
Copyright © 1993, 1999, The Workflow Management Coalition

Collection ListProcessDefinitions (
in Filter ProcDefFilter)

Argument Description (WMOpenProcessDefinitionsList Argument)

ProcDefFilter pproc_def_filter
Collection pquery_handle

8.2.3.8 ListProcessInstances
This method is the binding for the WMOpenProcessInstancesList function.

Collection ListProcessInstances (
in Filter ProcInstFilter)

Argument Description (WMOpenProcessInstancesList Argument)

ProcInstFilter pproc_inst_filter
Collection pquery_handle

8.2.3.9 GetProcessInstance
This method is the binding for the WMGetProcessInstance function.

ProcessInstance GetProcessInstance (
in String ProcInstID)

Argument Description (WMGetProcessInstance Argument)

ProcInstID pproc_inst_id
ProcessInstance pproc_inst

8.2.3.10 ListActivityInstances
This method is the binding for the WMOpenActivityInstancesList function.

Collection ListProcessInstances (
in Filter ActivityInstFilter)

Argument Description (WMActivityInstancesList Argument)

ActivityInstFilter pactivity_inst_filter
Collection pquery_handle

8.2.3.11 GetActivityInstance
This method is the binding for the WMGetActivityInstance function.

ActivityInstance GetActivityInstance (
in String ProcInstID,
in String ActivityInstID)

Argument Description (WMGetActivityInstance Argument)

ProcInstID pproc_inst_id
ActivityInstID pactivity_inst_id
ActivityInstance pactivity_inst

8.2.3.12 ListWorkItems
This method is the binding for the WMOpenWorkList function.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 103 of 103
Copyright © 1993, 1999, The Workflow Management Coalition

Collection ListWorkItems (
in Filter WorkListFilter)

Argument Description (WMOpenWorkList Argument)

WorkListFilter pworklist_filter
Collection pquery_handle

8.2.3.13 GetWorkItem
This method is the binding for the WMGetWorkItem function.

WorkItem GetWorkItem (
in String ProcInstID,
in String WorkItemID)

Argument Description (WMGetWorkItem Argument)

ProcInstID pproc_inst_id
WorkItemID pwork_item_id
WorkItem pwork_item

8.2.3.14 CreateApplicationDefinition
This method is the binding for the WMCreateEntity function, when used to create a workflow
application definition outside of any process definition.

ApplicationDefinition CreateParticipantDefinition ()

Argument Description (WMCreateEntity Argument)

Name entity_name
ApplicationDefinit
ion

Entity

8.2.3.15 DeleteApplicationDefinition
This method is the binding for the WMDeleteEntity function, when used to delete a workflow application
definition that is not part of a process definition.

DeleteApplicationDefinition (
in ApplicationDefinition AppDef)

Argument Description (WMDeleteEntity Argument)

AppDef entity_id

8.2.3.16 CreateParticipantDefinition
This method is the binding for the WMCreateEntity function, when used to create a workflow
participant definition outside of any process definition.

ParticipantDefinition CreateParticipantDefinition ()

Argument Description (WMCreateEntity Argument)

Name entity_name
ParticipantDefinit
ion

Entity

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 104 of 104
Copyright © 1993, 1999, The Workflow Management Coalition

8.2.3.17 DeleteParticipantDefinition
This method is the binding for the WMDeleteEntity function, when used to delete a workflow participant
definition that is not part of a process definition.

DeleteParticipantDefinition (
in ParticipantDefinition PartDef)

Argument Description (WMDeleteEntity Argument)

PartDef entity_id

8.2.4 Filter

The filter object class corresponds to the WMTFilter data type. Filter objects are externally creatable.

8.2.4.1 Properties
Filter objects have the following properties:

Name Type Description
Type Integer WMTFilter.filter_type
Length Integer WMTFilter.filter_length
AttributeName String WMTFilter.attribute_name
Comparison Integer WMTFilter.comparison
FilterString String WMTFilter.filter_string

8.2.4.2 Methods
There are no methods for Filter objects.

8.2.5 Process Definition

The process definition class corresponds to the WMTProcDefID data type. Process definition objects are
not externally creatable. They are returned by the Server object’s ListProcessDefinitions method, and by
the ProcessDefinition property of a ProcessInstance object.

8.2.5.1 Properites
A ProcessDefinition object has the following read-only properties:

Name Type Description
Activities Collection WPDL <Activity List>
Applications Collection WPDL <Workflow Application List>
Data Collection WPDL <Workflow Process Relevant Data

List>
ID String WMTProcDefId.proc_def_id
Name String WPDL <process name>
Participants Collection WPDL <Workflow Participant List>
States Collection WMOpenProcessDefinitionStatesList
Transitions Collection WPDL <Transition Information List>

All of these properties, except name, are read-only. The States property takes a Filter parameter.

8.2.5.2 Methods
A ProcessDefinition object has the following methods:

Signature Description

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 105 of 105
Copyright © 1993, 1999, The Workflow Management Coalition

ProcessInstance CreateInstance WMCreateProcessInstance
ChangeInstancesState
 in Filter InstanceFilter
 in String InstanceState

WMChangeProcessInstancesState

ChangeActivityInstancesState
 in String ActivityDefinitionID
 in Filter InstanceFilter
 in String InstanceState

WMChangeActivityInstancesState

TerminateInstances
 in Filter InstanceFilter

WMTerminateProcessInstances

AssignInstancesAttribute
 in Filter InstanceFilter
 in String Name
 in Variant Value

WMAssignProcessInstancesAttribute

AssignActivityInstancesAttribute
 in String ActivityInstanceID
 in Filter InstanceFilter
 in String Name
 in String Value

WMAssignActivityInstancesAttribute

AbortInstances
 in Filter InstanceFilter

WMAbortProcessInstances

ActivityDefinition AddActivity
 in String Name

WMAddEntity

ApplicationDefinition AddApplication
 in String Name

WMAddEntity

ParticipantDefinition AddParticipant
 in String Name

WMAddEntity

ProcessDataDefinition AddData
 in String Name

WMAddEntity

TransitionDefinition AddTransition
 in String Name

WMAddEntity

Note that the Server parameters to these methods is implicit. They use the server from which the process
definition was obtained.

8.2.5.3 CreateInstance
This method is the binding for the WMCreateProcessInstance function.

ProcessInstance CreateInstance ()

Argument Description (WMCreateProcessInstance Argument)

ProcessInstance pproc_inst_id

8.2.5.4 ChangeInstancesState
This method is the binding for the WMChangeProcessInstancesState function.

ChangeInstancesState (
in Filter InstanceFilter,
in String InstanceState)

Argument Description (WMChangeProcessInstancesState Argument)

InstanceFilter pproc_inst_filter
InstanceState process_inst_state

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 106 of 106
Copyright © 1993, 1999, The Workflow Management Coalition

8.2.5.5 ChangeActivityInstancesState
This method is the binding for the WMChangeActivityInstancesState function.

ChangeActivityInstancesState (
in String ActivityDefID,
in Filter InstanceFilter,
in String InstanceState)

Argument Description (WMChangeActivityInstancesState Argument)

ActivityDefID pactivity_def_id
InstanceFilter pact_inst_filter
InstanceState activity_inst_state

8.2.5.6 TerminateInstances
This method is the binding for the WMTerminateProcessInstances function.

TerminateInstances (
in Filter InstanceFilter)

Argument Description (WMTerminateProcessInstances Argument)

InstanceFilter pproc_inst_filter

8.2.5.7 AssignInstancesAttribute
This method is the binding for the WMAssignProcessInstancesAttribute function.

AssignInstancesAttribute (
in Filter InstanceFilter,
in String Name,
in Variant Value)

Argument Description (WMAssignProcessInstancesAttribute Argument)

InstanceFilter pact_inst_filter
Name attribute_name
Value pattribute_value

8.2.5.8 AssignActivityInstancesAttribute
This method is the binding for the WMAssignActivityInstancesAttribute function.

AssignActivityInstancesAttribute (
in String ActivityDefID,
in Filter InstanceFilter,
in String Name,
in Variant Value)

Argument Description (WMAssignActivityInstancesAttribute Argument)

ActivityDefID pactivity_def_id
InstanceFilter pact_inst_filter
Name attribute_name
Value pattribute_value

8.2.5.9 AbortInstances
This method is the binding for the WMAbortProcessInstances function.

AbortInstances (
in Filter InstanceFilter)

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 107 of 107
Copyright © 1993, 1999, The Workflow Management Coalition

Argument Description (WMAbortProcessInstances Argument)

InstanceFilter pproc_inst_filter

8.2.5.10 AddActivity
This method is the binding for the WMAddEntity function, when used to add an activity
definition to a process definition.

ActivityDefinition AddActivity (
 in String Name)

Argument Description (WMAddEntity Argument)

Name entity_name
ActivityDefinition entity

8.2.5.11 AddApplication
This method is the binding for the WMAddEntity function, when used to add an application
definition to a process definition.

ApplicationDefinition AddApplication (
 in String Name)

Argument Description (WMAddEntity Argument)

Name entity_name
ApplicationDefinit
ion

entity

8.2.5.12 AddData
This method is the binding for the WMAddEntity function, when used to add process relevant
data to a process definition.

ProcessDataDefinition AddData (
 in String Name)

Argument Description (WMAddEntity Argument)

Name entity_name
ProcessDataDefinit
ion

entity

8.2.5.13 AddParticipant
This method is the binding for the WMAddEntity function, when used to add a participant to a
process definition.

ParticipantDefinition AddParticipant (
 in String Name)

Argument Description (WMAddEntity Argument)

Name entity_name
ParticipantDefinit
ion

entity

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 108 of 108
Copyright © 1993, 1999, The Workflow Management Coalition

8.2.5.14 AddTransition
This method is the binding for the WMAddEntity function, when used to add transition
information to a process definition.

TransitionDefinition AddTransition (
 in String Name)

Argument Description (WMAddEntity Argument)

Name entity_name
TransitionDefiniti
on

entity

8.2.6 Process Instance

The ProcessInstance object class corresponds to the WMTProcessInst data type. Process instance objects
are not externally creatable. They are returned by the Server object’s ListProcessInstances method, and by
the ProcessInstance property of an ActivityInstance or WorkItem object.

8.2.6.1 Properties
A ProcessInstance object has the following read-only properties:

Name Type Description
Attributes Collection WMOpenProcessInstanceAttributesList
DataReference String WMTProcessInst.data_reference
ID String WMTProcessInst.proc_inst_id
Name String WMTProcessInst.process_name
Participants Collection WMTProcessInst.proc_participants
Priority Integer WMTProcessInst.priority
ProcessDefinition ProcessDefinition WMGetProcessDefinition
ProcessDefinitionID String WMTProcessInst.proc_def_id
State String WMTProcessInst.state
States Collection WMOpenProcessInstanceStatesList

All of these properties are read-only, except for the State property. Updating this property has the same
effect as calling the ChangeState method. The Attributes and States properties take a Filter parameter.
The ProcessDefinition property is a convenience. It calls the GetProcessDefinition method on the session
from which the process instance was obtained, passing the ProcessDefinitionID property value.

8.2.6.2 Methods
A ProcessInstance object has the following methods:

Signature Description
ProcessInstance Start WMStartProcess
Terminate WMTerminateProcess
ChangeState
 in String State

WMChangeProcessInstanceState

AssignAttribute
 in String Name
 in Variant Value

WMAssignProcessInstanceAttribute

Abort WMAbortProcessInstance

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 109 of 109
Copyright © 1993, 1999, The Workflow Management Coalition

Note that the Server parameters to these methods is implicit. They use the server from which the process
instance was obtained.

8.2.6.3 Start
This method is the binding for the WMStartProcess function.

ProcessInstance Start ()

Argument Description (WMStartProcess Argument)

ProcessInstance pnew_proc_inst_id

8.2.6.4 Terminate
This method is the binding for the WMTerminateProcessInstance function.

Terminate ()

8.2.6.5 ChangeState
This method is the binding for the WMChangeProcessInstanceState function.

ChangeState (
in String State)

Argument Description (WMChangeProcessInstanceState Argument)

State pproc_inst_state

8.2.6.6 AssignAttribute
This method is the binding for the WMAssignProcessInstanceAttribute function.

AssignAttribute (
in String Name,
in Variant Value)

Argument Description (WMAssignProcessInstanceAttribute Argument)

Name attribute_name
Value pattribute_value

8.2.6.7 Abort
This method is the binding for the WMAbortProcessInstance function.

Abort ()

8.2.7 Activity Definition

The ActivityDefinition class corresponds to the Workflow Process Activity entity in WPDL. Activity
definition objects are not externally creatable. They are returned in the Activities property of a
ProcessDefinition object.

8.2.7.1 Properties
An ActivityDefinition object has the following properties:

Name Type Description
Attributes Collection WMOpenEntityAttributesList

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 110 of 110
Copyright © 1993, 1999, The Workflow Management Coalition

ID String WPDL <activity id>
Implementation ApplicationDefti

ntion
ProcessDefintion

WPDL <implementation>

Name String WPDL <name>

8.2.8 Activity Instance

The ActivityInstance class corresponds to the WMTActivityInst data type. Activity instance objects are not
externally creatable. They are returned by the Server object’s ListActivityInstances method, and by the
ActivityInstance property of a WorkItem object.

8.2.8.1 Properties
An ActivityInstance object has the following properties:

Name Type Description
Attributes Collection WMOpenActivityInstanceAttributesList
DataReference String WMTActivityInst.data_reference
ID String WMTActivityInst.activity_inst_id
Name String WMTActivityInst.activity_name
Participants Collection WMTActivityInst.proc_participants
Priority Integer WMTActivityInstance.priority
ProcessInstance ProcessInstance WMGetProcessInstance
ProcessInstanceID String WMTActivityInstance.proc_inst_id
State String WMTActivityInstance.state
States Collection WMOpenActivityInstanceStatesList

All of these properties are read-only, except for the State property. Updating this property has the same
effect as calling the ChangeState method. The Attributes and States properties take a Filter parameter.
The ProcessInstance property is a convenience. It calls the GetProcessInstance method on the server from
which the activity instance was obtained, passing the ProcessInstanceID property value.

8.2.8.2 Methods
An ActivityInstance object has the following methods:

Signature Description
ChangeState
 in String State

WMChangeActivityInstanceState

AssignAttribute
 in String Name
 in Variant Value

WMAssignActivityInstanceAttribute

Note that the Server parameters to these methods is implicit. They use the server from which the activity
instance was obtained.

8.2.8.3 ChangeState
This method is the binding for the WMChangeActivityInstanceState function.

ChangeState (
in String State)

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 111 of 111
Copyright © 1993, 1999, The Workflow Management Coalition

Argument Description (WMChangeActivityInstanceState Argument)

State pactivity_inst_state

8.2.8.4 AssignAttribute
This method is the binding for the WMAssignActivityInstanceAttribute function.

AssignAttribute (
in String Name,
in Variant Value)

Argument Description (WMAssignActivityInstanceAttribute Argument)

Name attribute_name
Value pattribute_value

8.2.9 WorkItem

The WorkItem class corresponds to the WMTWorkItem data type. Work item objects are not externally
creatable. They are returned by the Server object’s ListWorkItem method..

8.2.9.1 Properties
A WorkItem object has the following properties:

Name Type Description
ActivityInstance ActivityInstance WMGetActivityInstance
ActivityInstanceID String WMTWorkItem.activity_inst
Attributes Collection WMOpenWorkItemAttributesList
DataReference String WMTWorkItem.data_reference
ID String WMTWorkItem.workitem_id
Name String WMTWorkItem.workitem_name
Participant String WMTWorkItem.proc_participant
Priority Integer WMTWorkItemance.priority
ProcessInstance ProcessInstance WMGetProcessInstance
ProcessInstanceID String WMTWorkItemance.proc_inst_id

All of these properties are read-only. The Attributes property takes a Filter parameter. The
ActivityInstance and ProcessInstance properties are a convenience. They call the GetProcessInstance and
GetActivityInstance methods, respectiively, on the server from which the work item was obtained, passing
the ProcessInstanceID or ActivityInstanceID property value.

8.2.9.2 Methods
A WorkItem object has the following methods:

Signature Description
AssignAttribute
 in String Name
 in Variant Value

WMAssignWorkItemAttribute

Complete WMCompleteWorkItem
Reassign
 in String SourceUser
 in String TargetUser

WMReassignWorkItem

Note that the Server parameters to these methods is implicit. They use the server from which the work item
was obtained.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 112 of 112
Copyright © 1993, 1999, The Workflow Management Coalition

8.2.9.3 AssignAttribute
This method is the binding for the WMAssignWorkItemAttribute function.

AssignAttribute (
in String Name,
in Variant Value)

Argument Description (WMAssignWorkItemAttribute Argument)

Name attribute_name
Value pattribute_value

8.2.9.4 Complete
This method is the binding for the WMCompleteWorkItem function.

Complete ()

8.2.9.5 Reassign
This method is the binding for the WMRessignWorkItem function.

Reassign (
in String SourceUser,
in String TargetUser)

Argument Description (WMReassignWorkItem Argument)

SourceUser psource_user
TargetUser ptarget_user

8.2.10 Transition Definition

The TransitionDefinition class corresponds to the Transition Information entity in WPDL. Transition
definition objects are not externally creatable. They are returned in the Transitions property of a
ProcessDefinition object.

8.2.10.1 Properties
A TransitionDefinition object has the following properties:

Name Type Description
Attributes Collection WMOpenEntityAttributesList
From ActivityDefinition WPDL <trans from>
ID String WPDL <transition id>
Name String WPDL <name>
To ActivityDefinition WPDL <trans to>

8.2.11 Participant Definition

The ParticipantDefinition class corresponds to the Workflow Participant Definition entity in WPDL.
Participant definition objects are not externally creatable. They are returned by the
ListParticipantDefinitions method of a Server object, or in the Participants property of a ProcessDefinition
object.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 113 of 113
Copyright © 1993, 1999, The Workflow Management Coalition

8.2.11.1 Properties
A ParticipantDefinition object has the following properties:

Name Type Description
Attributes Collection WMOpenEntityAttributesList
ID String WPDL <participant id>
Name String WPDL <name>
Type Integer WPDL <participant type>

8.2.12 Application Definition

The ApplicationDefinition class corresponds to the Workflow Application Definition entity in WPDL.
Application definition objects are not externally creatable. They are returned by the
ListApplicationDefinitions method of a Server object, or in the Applications property of a
ProcessDefinition object.

8.2.12.1 Properties
An ApplicationDefinition object has the following properties:

Name Type Description
Attributes Collection WMOpenEntityAttributesList
ID String
Name String WPDL <tool name>

8.2.13 Process Data Definition

The ProcessDataDefinition class corresponds to the Workflow Process Relevant Data entity in WPDL.
Process data definition objects are not externally creatable. They are returned in the Data property of a
ProcessDefinition object.

8.2.13.1 Properties
A ProcessDataDefinition object has the following properties:

Name Type Description
Attributes Collection WMOpenEntityAttributesList
ID String WPDL <data id>
Name String WPDL <name>
Type Integer WPDL <data type>

8.2.14 Attribute

The Attribute object class corresponds the a single attribute of a workflow object. . Attribute objects are
not externally creatable. They are returned in the Attributes property of a workflow object, which is a
collection of attribute objects indexed by name.

8.2.14.1 Properties
An Attribute object has the following properties:

Name Type WMFetch...Attribute Parameter
DataType Integer attribute_type
Name String attribute_name

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 114 of 114
Copyright © 1993, 1999, The Workflow Management Coalition

Value Variant pattribute_value

The name and data type properties are read-only Updating the value of an attribute has the same effect as
calling WMAssign…AttributeValue on the object from which the attribute was obtained.

8.3 OMG IDL Binding

This chapter provides a detailed description of the Workflow Facility Client Application components in
terms of OMG IDL. The specification is split into three modules, the first one providing generic interfaces
and operations, the others defining the specific interfaces and functions for the Application Client Interface
and the Process Definition Interface.

8.3.1 The Workflow Facility Base Module

The Workflow Facility Base module contains definitions common to all of the various interfaces described
in the Workflow Reference Model.
The interfaces defined by this module are:
• Attribute interface, which provides access to attributes of various types of workflow objects.
• AttributeList interface, which provides operations to handle filtered lists of Attributes.
• Filter interface, which is used to define queries for workflow objects issued agaist the Workflow

Enactment Service who owns these objects.
• WorkflowObject interface, which defines generic operations and attributes common to many workflow

objects
The following abbreviated IDL summarizes the interfaces contained in the CfWFBase module.

The following sections describe the contents of the CfWFBase module in detail.

8.3.1.1 Data Types and General Exceptions
The following data types and exceptions are defined in the CfWFBase module and are used in various
interfaces of the Workflow Facility.

module CfWorkflowFacilityBase {

... // data type and general exception definitions

interface Filter {
... // query filter object definitions

};

interface Attribute {
... // workflow object attribute definitions

};

interface AttributeList {
... // workflow object attribute list definitions

};

interface WorkflowObject {
... // workflow object definitions

};

};

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 115 of 115
Copyright © 1993, 1999, The Workflow Management Coalition

Each workflow object has a name and a state. WMTName and WMTState define the types to specifiy the
corresponding attributes. In addition, the WMTName type is used to define any kind of name-like attribute,
e.g., to specifiy named references to objects outside the scope of the Workflow Facility specification.
WMTStates handles a list of states. The WMTId type is used for identification of persistent object
references. The WMTErrorCode type is used to provide additional information with some Exceptions, e.g.,
the InvalidFilter exception uses the Error Code to indicate the specific problem with the Filter.
The InvalidFilter and NoMoreData exceptions are related to processing of filtered queries and query result
lists. InvalidState and TransitionNotAllowed exceptions are raised by state-changing operations on
workflow objects.

8.3.1.2 Filter Interface
The Filter interface is used to specify the filter criteria for a query against the set of objects of a specific
type.

interface Filter {
attribute long filterType;
attribute long filterLength;
attribute WMTName attributeName;
attribute integer comparison;
attribute string filterString;

};

8.3.1.3 Attribute Interfaces
The Attribute interface is used to access attributes of workflow objects. Attribute data are accessed by
value; the attributeValue is of type any and is further specified by attributeType.
There are basically three types of attributes of a workflow object that can be accessed via this interface:
• The standard attributes described in this document (e.g., Name)
• Vendor specific attributes associated with a particular object type (e.g., ‘ProcessClass’ attribute of a

ProcessDefinition)
• User defined attributes associated with particular object instances (e.g., ‘CustomerNumber’ attribute of

a particular ProcessInstance)

interface Attribute {
attribute WMTName attributeName;
attribute string attributeType;
attribute long attributeLength;
attribute any attributeValue;

};

typedef sequence<Attribute> Attributes;

The AttributeList interface provides iterator operations for handling of a list of Attributes; the
corresponding factory operation for this interface can be found in an workflow object interface. The

// TYPE DEFINITIONS
typedef string WMTName;
typedef WMTName WMTState;
typedef sequence<WMTState> WMTStates;
typedef string WMTId;
typedef integer WMTErrorCode

// EXCEPTION DEFINITIONS
exception InvalidFilter (WMTErrorCode badFilter);
exception NoMoreData ();
exception InvalidState();
exception TransitionNotAllowed();
exception AttributeAsignmentFailed();
exception InvalidAttribute();

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 116 of 116
Copyright © 1993, 1999, The Workflow Management Coalition

fetchAttribute operation gets the next Attribute from the list, the fetchAttributes operation gets the next
howMany Attributes from the list; if the list is empty, the NoMoreData exception is raised.

interface AttributeList {
Attribute fetchAttribute()

raises (NoMoreData);

Attributes fetchAttributes(long howMany)
raises (NoMoreData);

};

8.3.1.4 Workflow Object Interface
The Workflow Object interface defines the attributes and operations common to most workflow objects.
Each WorkflowObject has a Name, a State and a set of Attributes associated with it.
A list of valid states for a particular WorkflowObject can be obtained using the listValidStates operation;
the InvalidState exception is raised when a state change to an unknown state is requested. getState obtains
the current State of a workflow object and setState changes the State; the TransitionNotAllowed exception
is raised when the transition from the current state to the new state is not allowed.
OpenAttributesList is the factory operation for an AttributeList, allowing for a query for attributes;
getAttributeValue supports access to attributes by name. The AssignAttribute(s) operations assign new
values to Attributes. The InvalidAttribute exception is raised on requests for attributes not defined for the
workflow object; tha AttributeAssignmentFailed exception is raised when the Attribute could not be
modified, e.g., is read-only.

interface WorkflowObject {

attribute WMTName name;
attribute WMTId id;

void listValidStates (
in Filter filter,
in boolean countFlag,
out WMTStates states,
out long count);

void changeState (in WMTState newState)
raises (TransitionNotAllowed, InvalidState);

void getState (out WMTState currentState);

void openAttributeList (
in Filter filter,
in boolean countFlag,
out AttributeList attributes,
out long count)

raises (InvalidFilter);

void getAttributeValue (
in WMTName name
out Attribute attribute)

raises (InvalidAttribute);

void assignAttribute (in Attribute attribute)
raises (InvalidAttribute, AttributeAssignmentFailed);

void assignAttributes (in Attributes attributes)
raises (InvalidAttribute, AttributeAssignmentFailed);

};

8.3.2 Workflow Application Client Server Interface

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 117 of 117
Copyright © 1993, 1999, The Workflow Management Coalition

The Workflow ApplicationClientServer interface handles the connection of a particular workflow user to an
Enactment Service and provides access oto the workflow objects accessible through this Enactment Service.
The connect operation initializes the ApplicationClientServer; the context of the connection is defined by
the engineName and the scope. The ConnectFailed excpetion is raised when a connection could not be
established. The disconnect operation serves as a destructor for the ApplicationClientServer.
Access to the workflow objects accessible through the connection is supported by providing factory
methods for interfaces managing access to lists of workflow objects: the Open...sList operation take a filter
as their first argument (see the CfWFBase module descritpion for details), the countFlag parameter
indicates whether the number of elements in the query result should be returned. A NotConnected exception
is raised when no connection was established. The query results are bound to a connection and are
invalidated when the connection is terminated.
Operations are provided to get a ProcessInstance, ActivityInstance or WorkItem object via its identifier.

interface ApplicationClientServer {

attribute CfWFBase :: WMTName engineName;
attribute CfWFBase :: WMTName scope;

void connect(
in CfWFBase :: WMTName userId,
in string password)

raises (ConnectFailed);

void disconnect()
raises (NotConnected);

ProcessDefinitionList openProcessDefinitionsList(
 in CfWFBase :: Filter filter,
 in boolean countFlag)

raises (InvalidFilter, NotConnected);

ProcessInstanceList openProcessInstancesList (
in CfWFBase :: Filter filter,
in boolean countFlag)

raises (InvalidFilter, NotConnected);

ActivityInstanceList openActivityInstancesList (
in CfWFBase :: Filter filter,
in boolean countFlag)

raises (InvalidFilter, NotConnected);

WorkList openWorkList (
in CfWFBase :: Filter filter,
in boolean countFlag)

raises (InvalidFilter, NotConnected);

ProcessInstance getProcessInstance(
in CfWFBase :: WMTId processInstanceId)

raises (InvalidId);

ActivityInstance getActivityInstance(
in CfWFBase :: WMTId processInstanceId,
in CfWFBase :: WMTId activityInstanceId)

raises (InvalidId);

Workitem getWorkitem(
in CfWFBase :: WMTId processInstanceId,
in CfWFBase :: WMTId workItemId)

raises (InvalidId);

};

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 118 of 118
Copyright © 1993, 1999, The Workflow Management Coalition

8.3.2.1 Process Definition Interface
The Process Definition interface provides factory operation for Process Instances and supports Process
Management operations on workflow objects related to the Process Definition: change of State and change
of a specific Attribute’s value for all members of a filtered set of Process Instances and Activity Instances.
The ProcessDefinition interface inherits attributes and operations from WorkflowObject.

interface ProcessDefinition : CfWFBase :: WorkflowObject {

ProcessInstance createProcessInstance (
in CfWFBase :: WMTName instanceName)

raises (NotConnected);

void changeProcessInstancesState (
in CfWFBase :: Filter filter,
in CfWFBase :: WMTState newState)

raises (NotConnected, TransitionNotAllowed
InvalidState);

void abortProcessInstances (
in CfWFBase :: Filter filter)

raises (NotConnected, TransitionNotAllowed);

void terminateProcessInstances (
in CfWFBase :: Filter filter)

raises (NotConnected, TransitionNotAllowed);

void assignProcessInstancesAttribute (
in CfWFBase :: Filter filter,
in CfWFBase :: Attribute attribute)

raises (NotConnected, InvalidFilter, InvalidAttribute,
AttributeAssignmentFailed);

void changeActivityInstancesState (
in CfWFBase :: Filter filter,
in CfWFBase :: WMTState newState)

raises (NotConnected, InvalidFilter, TransitionNotAllowed,
InvalidState);

void assignActivityInstancesAttribute (
in CfWFBase :: Filter filter,
in CfWFBase :: Attribute attribute)

raises (NotConnected, InvalidFilter, InvalidAttribute,
AttributeAssignmentFailed);

};

8.3.2.2 Process Instance Interface
The ProcessInstance interface provides operations to access and modify the state and the attributes of a
Process Instance object.
State changes can be performed using the start, terminate or abort operations. Additional state transitions
may be supported by an EnactmentService(see the WorkflowObject :: changeState() operation described
above). The getParentProcessDefinition operation returns the ProcessDefinition object that was used to
create the specific ProcessInstance. The listAssignedParticipants operation provides the list of workflow
Participants associated to the Process Instance. The ProcessInstance interface inherits attributes and
operations from WorkflowObject. All operations require an active connection to the Enactment Service.

interface ProcessInstance : CfWFBase :: WorkflowObject{

attribute CfWFBase :: WMTDataRef dataReference;
attribute long priority;

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 119 of 119
Copyright © 1993, 1999, The Workflow Management Coalition

ProcessDefinition getParentProcessDefinition ();

void start ()
raises (NotConnected, TransitionNotAllowed);

void terminate();
raises (NotConnected, TransitionNotAllowed);

void abort();
raises (NotConnected, TransitionNotAllowed);

CfWFBase :: WMTWflParticipants listAssignedParticipants ()
raises (NotConnected);

};

8.3.2.3 Activity Instance Interface
The Activity Instance interface provides operations to access and modify the attributes and the state of an
ActivityInstance object.
The getParentProcessInstance operation returns the ProcessInstance object that owns the specific
ActivityInstance. The listAssignedParticipants operation provides the list of workflow Participants
associated to the Activity Instance. The ActivityInstance interface inherits attributes and operations from
WorkflowObject. All operations require an active connection to the Enactment Service.

interface ActivityInstance : CfWFBase :: WorkflowObject {

attribute CfWFBase :: WMTDataRef dataReference;
attribute long priority;

ProcessInstance getParentProcessInstance ();

CfWFBase :: WMTWflParticipants listAssignedParticipants ()
raises (NotConnected);

};

8.3.2.4 Work Item Interface
The WorkItem interface provides operations to access and modify the attributes and the state of a WorkItem
object.
The get- and completeWorkitem operations change the State of a WorkItem. getAssignedParticipant returns
the workflow participant currently assigned to the work item; reassignWorkItem assigns it to another
participant.

interface WorkItem : CfWFBase :: WorkflowObject {

attribute CfWFBase :: WMTDataRef dataReference;
attribute long priority;

ProcessInstance getParentProcessInstance ();

ActivityInstance getParentActivityInstance ();

void reassign (
in CfWFBase::WMTWflParticipant sourceUser,
in CfWFBase::WMTWflParticipant targetUser)

raises (NotConnected, InvalidSourceUser, InvalidTargetUser);

void get ()
raises (NotConnected, TransitionNotAllowed);

void complete()

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 120 of 120
Copyright © 1993, 1999, The Workflow Management Coalition

raises (NotConnected, TransitionNotAllowed);

CfWFBase :: WMTWflParticipant getAssignedParticipant()
raises (NotConnected);

};

8.3.2.5 Filtered List Processing
The following interfaces provide iterators for results returned from filtered list requests; see the section on
Attributes for a description of the iterator functions.

typedef sequence<ProcessInstance> ProcessInstances;
typedef sequence<Activitynstance> ActivityInstances;
typedef sequence<WorkItem> WorkItems;

interface ProcessDefinitionList {
attribute long count;

ProcessDefinition fetchProcessDefinition()
raises (NoMoreData);

ProcessDefinitions fetchProcessDefinitions(
in unsigned long howMany)

raises (NoMoreData);
};
interface ProcessInstanceList {

attribute long count;

ProcessInstance fetchProcessInstance()
raises (NoMoreData);

ProcessInstances fetchProcessInstances(
in unsigned long howMany)

raises (NoMoreData);
};
interface ActivityInstanceList {

attribute long count;

ActivityInstance fetchActivityInstance()
raises (NoMoreData);

ActivityInstances fetchActivityInstances(
in unsigned long howMany);

raises (NoMoreData);
};
interface WorkList {

attribute long count;

WorkItem fetchWorkItem()
raises (NoMoreData);

WorkItem fetchWorkItems(
in unsigned long howMany);

raises (NoMoreData);
};

8.3.3 The Process Definition Module

The Process Definition Module contains the interfaces used to create and modify Process Definitions to be
executed by an Enactement Service.
The module defines the following interfaces:

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 121 of 121
Copyright © 1993, 1999, The Workflow Management Coalition

• ProcessModelServer interface, which handles connection of a workflow participant with a particular
Enactment Service and provides factory interfaces for access to filtered list of workflow definition
objects owned by that Enactment Service.

• ProcessModel interface, which represents a workflow model; this interface serves as a factory for
components of the process model, such as ActivityDefinitions and TransitionDefinitions.

• ActivityDefinition interface, which represents a node in a process model
• TransitionDefinition interface, which represents a connection between ActivityDefinitions
• DataDefinition interface, which defines the Process Relevant Data used by a particular process model
• ApplicationDefinition interface, which represents an application that can be used to support processing

of an Activity during execution of a process model
• ParticipantDefinition interface, which represents a resource that might receive Work Items during

execution of a process model
The following abbreviated IDL summarizes the interfaces contained in the CfWFBase module.

8.3.3.1 Data Types and Specific Exceptions
The following data types and exceptions are specific to the Process Definition Client module.

#include “CfWFBase.idl”

module CfWFProcessDefinition {

... // Data type and specific exception definitions

interface ProcessModel; // Forward declaration
interface ApplicationDefinition; // Forward declaration
interface ParticipantDefinition; // Forward declaration

interface ProcessModelList {
... // Iterator for process model query result

 };

interface ApplicationDefinitionList {
... // Iterator for application definition query result

 };

interface ParticipantList {
... // Iterator for participant definition query result

};

interface ProcessDefinitionServer {
... // process definition server object definitions

};

interface ProcessModel : CfWFBase::WorkflowObject{
... // process model object definitions

};

interface ApplicationDefinition : CfWFBase::WorkflowObject {
... // application definition object definitions

};

interface ParticipantDefinition : CfWFBase::WorkflowObject {
... // participant definiton object definitions

};

};

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 122 of 122
Copyright © 1993, 1999, The Workflow Management Coalition

The exceptions defined here deal with poblems related to management of the connection to the Enactment
Service.

8.3.3.2 Process Definition Server Interface
The Process Definition Server Interface handles the connection of a particular workflow user to an
Enactment Service and provides access oto the workflow definition objects accessible through this
Enactment Service.
The connect operation initializes the WorkflowEnactmentServer; the context of the connection is defined by
the engineName and the scope. The ConnectFailed excpetion is raised when a connection could not be
established. The disconnect operation serves as a destructor for the ApplicationClientServer.
Access to the workflow objects accessible through the connection is supported by providing factory
methods for interfaces managing access to lists of workflow objects: the Open...sList operation take a filter
as their first argument (see the CfWFBase module descritpion for details), the countFlag parameter
indicates whether the number of elements in the query result should be returned. A NotConnected exception
is raised when no connection was established. The query results are bound to a connection and are
invalidated when the connection is terminated.

interface ProcessDefinitionServer {

attribute CfWFBase :: WMTName engineName;
attribute CfWFBase :: WMTName scope;

void connect(
in CfWFBase :: WMTName userId,
in string password)

raises (ConnectFailed);

void disConnect()
raises (NotConnected);

ProcessModel createProcessModel(
 in CfWFBase :: WMTName processName)

raises (NotConnected);

ProcessModelList openProcessModelsList(
 in CfWFBase :: Filter filter,
 in boolean countFlag)

raises (InvalidFilter, NotConnected);

ApplicationDefinitionList openApplicationDefinitionsList (
in CfWFBase :: Filter filter,
in boolean countFlag)

raises (InvalidFilter, NotConnected);

ParticipantDefinitionList openParticipantDefinitionsList (
in CfWFBase :: Filter filter,
in boolean countFlag,
out WMTActivityInstanceList activityInstances,
out long count)

raises (InvalidFilter, NotConnected);

ProcessModel getProcessModel(
in CfWFBase :: WMTId processModelId)

raises (InvalidId);

// TYPE DEFINITIONS

// SPECIFIC EXCEPTION DEFINITIONS
exception NotConnected();
exception ConnectFailed(CfWFBase::WMTErrorCode);
exception InvalidId();

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 123 of 123
Copyright © 1993, 1999, The Workflow Management Coalition

ApplicationDefinition getApplicationDefinition(
in CfWFBase :: WMTId applicationDefinitionId)

raises (InvalidId);

ParticipantDefinition getParticipantDefinition(
in CfWFBase :: WMTId participantDefinitionId)

raises (InvalidId);
};

8.3.3.3 Process Model Interface
The Process Model interface provides factory operation for Activity Definitions, Transition Definitions and
Data Definitions contained in a Process Model.
The ProcessDefinition interface inherits attributes and operations from WorkflowObject.

interface ProcessModel : CfWFBase :: WorkflowObject {

ActivityDefinition addActivityDefinition(
in CfWFBase :: WMTName activityName)

raises (NotConnected);

void removeActivityDefinition(
in CfWFBase :: WMTId activityId)

raises (NotConnected);

DataDefinition addDataDefinition(
in CfWFBase :: WMTName dataName,
in CfWFBase :: WMTType dataType)

raises (NotConnected);

void removeDataDefinition(
in CfWFBase :: WMTId dataId)

raises (NotConnected);

TransitionDefinition addTransitionDefinition(
in CfWFBase :: WMTName transitionName,
in CfWFBase :: WMTId sourceActivityDefinitionId,
in CfWFBase :: WMTId targetActivityDefinitionId)

raises (NotConnected, InvalidId);

void removeTransitionDefinition(
in CfWFBase :: WMTId transitionId)

raises (NotConnected);

};

8.3.3.4 Application Definition Interface
The ApplicationDefinition interface provides operations to access and modify the attributes of an
Application Definition object. All operations require an active connection to the Enactment Service.

interface ApplicationDefinition : CfWFBase :: WorkflowObject{

};

8.3.3.5 Participant Definition Interface
The ParticipantDefinition interface provides operations to access and modify the attributes of a Participant
Definition object. All operations require an active connection to the Enactment Service.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 124 of 124
Copyright © 1993, 1999, The Workflow Management Coalition

interface ParticipantDefinition : CfWFBase :: WorkflowObject{
attribute WMTParticipantType type;

};

8.3.3.6 Activity Definition Interface
The ActivityDefinition interface provides operations to access and modify the attributes of a Activity
Definition object.
The getParentProcessModel operation returns the ProcessModel object that was used to create the specific
ActivityDefinition. All operations require an active connection to the Enactment Service.

interface ActivityDefinition : CfWFBase :: WorkflowObject{

attribute WMTImpementationType implementationType;
attribute CfWFBase :: WMTId implementationId;

ProcessModel getParentProcessModel ();

};

8.3.3.7 Transition Definition Interface
The TransitionDefinition interface provides operations to access and modify the attributes of a Transition
Definition object.
The getParentProcessModel operation returns the ProcessModel object that was used to create the specific
TransitionDefinition. All operations require an active connection to the Enactment Service.

interface TransitionDefinition : CfWFBase :: WorkflowObject {

attribute CfWFBase :: WMTId sourceActivityId;
attribute CfWFBase :: WMTId targetActivityId;

ProcessModel getParentProcessModel ();

};

8.3.3.8 Filtered List Processing
The following interfaces provide iterators for results returned from filtered list requests; see the section on
Attributes for a description of the iterator functions.

typedef sequence<ProcessModel> ProcessModels;
typedef sequence<ActivityDefinition> ActivityDefinitions;
typedef sequence<TransitionDefinition> TransitionDefinitions;
typedef sequence<ApplicationDefinition> ApplicationDefinitions;
typedef sequence<ParticipantDefinition> ParticipantDefinitions;

interface ProcessModelsList {
attribute long count;

ProcessModel fetch();
raises (NoMoreData);

ProcessModels fetchN(
in unsigned long howMany);

raises (NoMoreData);
};

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 125 of 125
Copyright © 1993, 1999, The Workflow Management Coalition

interface ActivityDefinitionsList {
attribute long count;

ActivityDefinition fetch ();
raises (NoMoreData);

ActivityDefinition fetchN(
in unsigned long howMany);

raises (NoMoreData);
};

interface TransitionDefinitionsList {
attribute long count;

TransitionDefinition fetch ();
raises (NoMoreData);

TransitionDefinitions fetchN(
in unsigned long howMany);

raises (NoMoreData);
};

interface ApplicatonDefinitionsList {
attribute long count;

ApplicationDefinition fetch ();
raises (NoMoreData);

ApplicationDefinitons fetchN(
in unsigned long howMany);

raises (NoMoreData);
};

interface ParticipantDefinitionsList {
attribute long count;

ParticipantDefinition fetch ();
raises (NoMoreData);

ParticipantDefinitions fetchN(
in unsigned long howMany);

raises (NoMoreData);
};

8.3.4 Relationship to WfMC Standards

The C-language description has been converted into an object oriented specification. Where possible, the
syntax of C-functions has been preserved when converting to operations on objects. Here is a list of
changes:
• The operations dealing with States and Attributes of workflow objects have been moved into the

WorkflowObject class. The generic operations replace the object-type specific ones defined in the C-
API.

• Processing of filtered lists is done in the same way as in the C-language specification, using an Iterator
instead of WMTPQueryHandle. The Iterator might return more than one element at a time.

• The limits on the size of string type attributes have been removed. Same for limit on the number of
Participants associated with an ActivityInstance or ProcessInstance.

• The Unique Id attributes of the various workflow entities are replaced by their object Id (not an explicit
attribute).

• ReturnCodes have been replaced by exceptions.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 126 of 126
Copyright © 1993, 1999, The Workflow Management Coalition

9. Appendix D: Audit Data
The following describes the Audit Data related to the functions2 defined in this specification. The WfMC
Audit Data Specification identifies events related to workflow objects (in general changes of state or of
attributes) and describes the format of Audit Data to be reported for these events. Events are in general
triggered by an external interaction with the Enactment Service, e.g., via an operation define in this
specification. An event can be a directly associated to the operation (e.g., WMStartProcessInstance triggers
a WMProcessInstancesStarted event) or indirectly triggered by such an interaction, mediated by the
Enactment Service (e.g., WMStartProcessInstance will cause state changes for the start activities of a
process, resulting in WMActivityInstanceStateChanged events). An implementation of an Enactment
Service complies with the WfMC Audit Data Specification if Audit Records are supported for all events
identified in that document. For convenience of the reader we have included references to Audit-relevant
events triggered by the functions described in this specification; for each operation the Audit Data Record
and the directly associated event is stated. The following description provides pointers to the corresponding
definitions in the WfMC Audit Data Specification; please refer to this document for details.

9.1 Auditing Process Definitions

The following table identifies the Audit Data for WAPI functions related to state changes Process
Definitions. Operation refers to a aWAPI function defined in this specification, Event Set refers to a section
in the WfMC Audit Data Specification and Event identifies the event reported in the Audit Data record.

Operation Audit Data Record Event
WMChangeProcessDefinitionState Change Process

Definition State
WMChangedProcessDefinitionState

9.2 Auditing Process Instances

The following table identifies the Audit Data for WAPI functions related to state changes and changes of
attributes of activity instances. Operation refers to a aWAPI function defined in this specification, Event Set
refers to a section in the WfMC Audit Data Specification and Event identifies the event reported in the
Audit Data record.

Operation Audit Data Record Event
WMCreateProcessInstance Create/Start

Process/Subprocess
Instance State

WMCreatedProcessInstance

WMStartProcessInstance Create/Start
Process/Subprocess
Instance State

WMStartedProcessInstance

WMChangeProcessInstancesState Change
Process/Subprocess
Instance State

WMChangedProcessInstanceState

WMChangeProcessInstanceState Change
Process/Subprocess
Instance State

WMChangedProcessInstanceState

WMTerminateProcessInstances Change
Process/Subprocess
Instance State

WMTerminatedProcessInstance

WMTerminateProcessInstance Change WMTerminatedProcessInstance

2 The new Process Definition functions are not covered here at the moment.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 127 of 127
Copyright © 1993, 1999, The Workflow Management Coalition

Process/Subprocess
Instance State

WMAbortProcessInstances Change
Process/Subprocess
Instance State

WMAbortedProcessInstance

WMAbortProcessInstance Change
Process/Subprocess
Instance State

WMAbortedProcessInstance

WMAssignProcessInstancesAttribute Assign Process
Instance Attributes

WMAssignedProcessInstanceAttributes

WMAssignProcessInstanceAttribute Assign Process
Instance Attributes

WMAssignedProcessInstanceAttributes

9.3 Auditing Activity Instances

The following table identifies the Audit Data for WAPI functions related to state changes and changes of
attributes of activity instances. Operation refers to a aWAPI function defined in this specification, Event Set
refers to a section in the WfMC Audit Data Specification and Event identifies the event reported in the
Audit Data record.

Operation Audit Data Record Event
WMChangeActivityInstancesState Change Activity

Instance State
WMChangedActivityInstanceState

WMChangeActivityInstanceState Change Activity
Instance State

WMChangedActivityInstanceState

WMAssignActivityInstancesAttribute Assign Activity
Instance Attributes

WMAssignedActivityInstanceAttributes

WMAssignActivityInstanceAttribute Assign Activity
Instance Attributes

WMAssignedActivityInstanceAttributes

9.4 Auditing Workitems

The following table identifies the Audit Data for WAPI functions related to work items. Operation refers to
a aWAPI function defined in this specification, Event Set refers to a section in the WfMC Audit Data
Specification and Event identifies the event reported in the Audit Data record.

Operation Audit Data Record Event
WMAssignWorkitemAttribute Assign Workitem

Attributes
WMAssignedWorkitemAttributes

WMChangeWorkitemState Change Workitem
State

WMChangedWorkitemState

WMGetWorkitem Change Workitem
State

WMSelectedWorkitem (optional)

WMCompleteWorkitem Change Workitem
State

WMCompletedWorkitem

WMReassignWorkitem Assign/Reassign
Workitem

WMReassignedWorkitem

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 128 of 128
Copyright © 1993, 1999, The Workflow Management Coalition

10. Appendix E: Conformance Profiles
This chapter deals with definition of criteria for a specific implementation of a Workflow Enactment
Service to be conformant with the WAPI specification. Rather than requesting an implementation to support
all of the functions specified above to conform with the WfMC standard, we define various levels of
conformance. A set of Profiles is defined, each profile identifying a set of operations that address a specific
usage scenario. An implementation of an Enactment Service might choose to comply with some, but not
necessarily all of the Profiles.

10.1 Philosophy and Approach

The following conformance profiles are non-exclusive sets of functions from the WAPI2 specification.
They strike a balance between the Vendor’s desire to simplify the conformance process and the Customer’s
desire to have a straightforward and understandable conformance statement. The Conformance Profiles
achieve this balance through the use of required WAPI Functions within optional profiles -- by definition,
any profile is optional but its functionality is not. The philosophy behind their organization is as follows:

Their basic structure is easy to understand. The framework is understandable to customers and vendors
who may not be intimately familiar with the specification and the history of its development.

They provide flexibility for vendors by avoiding an “all-or-nothing” conformance framework. The profiles
mirror the general capabilities of today’s workflow products. Vendors may choose to support any number
of the profiles, but do not have to support them all -- we will measure conformance on a profile-by-profile
basis. For example, a vendor could choose to provide only WorkList Handler support, and could earn a
conformance certification just for that Profile.

Each Profile defines a set of functions that deliver business value to the customer in a predictable,
meaningful way. Customers can evaluate products using these conformance profiles. Each profile provides
a meaningful service between the vendor’s product and the customer’s client applications that use the
profile. Customers want behavioral consistency across different implementations of this interface; that
consistency is the result of the simple nature of these profiles.

10.2 Practice and Policy

A vendor can not claim conformance to this or any other WfMC specification unless specifically
authorized to make that claim by the WfMC. WfMC grants this permission only upon the
verification of the particular vendor’s implementation of the published specification, according to
applicable test procedures defined by WfMC.

When a vendor chooses to support a Conformance Profile, all WAPI Functions in that profile must actually
“do something” in the vendor product representative of that WAPI Function’s purpose. It is not acceptable
to return a “WM_Unsupported” error message for a WAPI Function that is part of a supported profile.

Each vendor must produce documentation showing attribute mappings; i.e., which of their product's
attributes are accessible using any of the attribute WAPI Functions in each supported profile.

Vendors may choose to support additional WAPI functions, along with vendor-specific API functions not
prescribed in the Coalition specification. In such a case, WfMC encourages the vendor to document those
function calls (and their associated attribute mappings) as an addendum to their documentation.

Each implementation must include program stubs for all unsupported WAPI functions. A call to any of
these unsupported functions must return a “WM_Unsupported” error message.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 129 of 129
Copyright © 1993, 1999, The Workflow Management Coalition

10.3 The WAPI Conformance Profiles and Functions

For each Conformance Profile a function is defined that allows an application to check whether or not the
specific Profile is supported by the implementation. Each implementation must include all
Is<xxx>ProfileSupported() functions. These functions are in the following format:

WMIs<xxx>ProfileSupported() - where <xxx> is the name of a particular Conformance Profile -
API commands are intended to allow a user application to inquire whether a vendor's
implementation of WM functions supports a certain Conformance Profile.

10.3.1 WMIsWorkListHandlerProfileSupported

NAME

WMIsWorkListHandlerProfileSupported - Connect to the WFM Engine for this series of interactions

DESCRIPTION

The WMIsWorkListHandlerProfileSupported informs the user application that this WFMC
implementation fully supports all the WorkList Handler functions that comprise the Work List
Handler Conformance Profile.

INTENDED USE

Implementation of this conformance profile provides external worklist handler functionality to a client
application.

WMTErrRetType WMIsWorkListHandlerProfileSupported()

Argument Description

No Arguments

ERROR RETURN VALUE

WM_TRUE - If Conformance Profile is supported
WM_FALSE - If Conformance Profile is not supported.

WORKLIST HANDLER CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Worklist Handler Conformance Profile:

WMConnect
WMDisconnect
WMOpenWorkList
WMFetchWorkItem
WMCloseWorkList
WMGetWorkItem
WMCompleteWorkItem
WMReassignWorkItem
WMOpenWorkItemAttributesList
WMFetchWorkItemAttribute
WMCloseWorkItemAttributesList
WMGetWorkItemAttributeValue
WMAssignWorkItemAttribute

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 130 of 130
Copyright © 1993, 1999, The Workflow Management Coalition

• All Audit Events related to state and attribute changes of Work Items, described by the Audit Data
Types ‘Change WorkItem State’ and ‘Assign WorkItem Attributes’

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 131 of 131
Copyright © 1993, 1999, The Workflow Management Coalition

10.3.2 WMIsProcessControlStatusProfileSupported

NAME

WMIsProcessControlStatusProfileSupported - Connect to the WFM Engine for this series of
interactions

DESCRIPTION

The WMIsProcessControlStatusProfileSupported informs the user application that this WFMC
implementation fully supports all the Process Control Status functions that comprise the Process
Control Status Conformance Profile.

INTENDED USE

Implementation of this conformance profile allows a client application to select and manage
process instances.

WMTErrRetType WMIsProcessControlStatusProfileSupported()

Argument Description

No Arguments

ERROR RETURN VALUE

WM_TRUE - If Conformance Profile is supported
WM_FALSE - If Conformance Profile is not supported.

PROCESS CONTROL STATUS CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Process Control Status Conformance Profile:

WMConnect
WMDisconnect
WMOpenProcessDefinitionsList
WMFetchProcessDefinition
WMCloseProcessDefinitionsList
WMCreateProcessInstance
WMStartProcess
WMTerminateProcessInstance
WMOpenProcessInstanceStatesList
WMFetchProcessInstanceState
WMCloseProcessInstanceStatesList
WMChangeProcessInstanceState
WMOpenProcessInstancesList
WMFetchProcessInstance
WMCloseProcessInstancesList
WMGetProcessInstance
WMOpenProcessInstanceAttributesList
WMFetchProcessInstanceAttribute
WMCloseProcessInstanceAttributesList
WMGetProcessInstanceAttributeValue
WMAssignProcessInstanceAttribute

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 132 of 132
Copyright © 1993, 1999, The Workflow Management Coalition

• All Audit Events related to state and attribute changes of Process Instances, described by the Audit Data
Types ‘Change Process / Subprocess Instance State’ and ‘Assign Process / Subprocess Attributes’

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 133 of 133
Copyright © 1993, 1999, The Workflow Management Coalition

10.3.3 WMIsProcessDefinitionProfileSupported

NAME

WMIsProcessDefintionProfileSupported - Connect to the WFM Engine for this series of interactions

DESCRIPTION

The WMIsProcessDefintionProfileSupported informs the user application that this WFMC
implementation fully supports all the Process Defintion functions that comprise the Process
Defintion Conformance Profile.

INTENDED USE

Implementation of this conformance profile enables a client application to display a list of
available process definitions and their respective states.

WMTErrRetType WMIsProcessDefintionProfileSupported()

Argument Description

No Arguments

ERROR RETURN VALUE

WM_TRUE - If Conformance Profile is supported
WM_FALSE - If Conformance Profile is not supported.

PROCESS DEFINITION CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Process Defintion Conformance Profile:

WMConnect
WMDisconnect
WMOpenProcessDefinitionStatesList
WMFetchProcessDefinitionState
WMCloseProcessDefinitionStatesList
WMChangeProcessDefinitionState
WMOpenProcessDefinitionsList
WMFetchProcessDefinition
WMCloseProcessDefinitionsList

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:
• All Audit Events related to state changes of Process Definitions, described by the Audit Data Types

‘Change Process Definition State’

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 134 of 134
Copyright © 1993, 1999, The Workflow Management Coalition

10.3.4 WMIsProcessAdminProfileSupported

NAME

WMIsProcessAdminProfileSupported - Connect to the WFM Engine for this series of interactions

DESCRIPTION

The WMIsProcessAdminProfileSupported informs the user application that this WFMC
implementation fully supports all the Process Admin functions that comprise the Process Admin
Conformance Profile.

INTENDED USE

Implementation of this conformance profile allows a client application to support global
manipulation of process instances by an administrator. Contrast this set with the Process Control
Status functions which work only on individual process instances.

WMTErrRetType WMIsProcessAdminProfileSupported()

Argument Description

No Arguments

ERROR RETURN VALUE

WM_TRUE - If Conformance Profile is supported
WM_FALSE - If Conformance Profile is not supported.

PROCESS ADMIN CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Process Admin Conformance Profile:

WMConnect
WMDisconnect
WMChangeProcessInstancesState
WMTerminateProcessInstances
WMAbortProcessInstances
WMAbortProcessInstance
WMAssignProcessInstancesAttribute
WMOpenProcessInstanceStatesList
WMFetchProcessInstanceState
WMCloseProcessInstanceStatesList
WMOpenProcessDefinitionsList
WMFetchProcessDefinition
WMCloseProcessDefinitionsList
WMOpenProcessInstancesList
WMFetchProcessInstance
WMCloseProcessInstancesList
WMOpenProcessInstanceAttributesList
WMFetchProcessInstanceAttribute
WMCloseProcessInstanceAttributesList

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 135 of 135
Copyright © 1993, 1999, The Workflow Management Coalition

• All Audit Events related to state changes of Process Instances, described by the Audit Data Types
‘Change Process / Subprocess Instance State’

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 136 of 136
Copyright © 1993, 1999, The Workflow Management Coalition

10.3.5 WMIsActivityControlStatusProfileSupported

NAME

WMIsActivityControlStatusProfileSupported - Connect to the WFM Engine for this series of
interactions

DESCRIPTION

The WMIsActivityControlStatusProfileSupported informs the user application that this WFMC
implementation fully supports all the Activity Control Status functions that comprise the Activity
Control Status Conformance Profile.

INTENDED USE

Implementation of this conformance profile allows a client application to select and manage
activity instances.

WMTErrRetType WMIsActivityControlStatusProfileSupported()

Argument Description

No Arguments

ERROR RETURN VALUE

WM_TRUE - If Conformance Profile is supported
WM_FALSE - If Conformance Profile is not supported.

ACTIVITY CONTROL STATUS CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Activity Control Status Conformance Profile:

WMConnect
WMDisconnect
WMOpenActivityInstanceStatesList
WMFetchActivityInstanceState
WMCloseActivityInstanceStatesList
WMChangeActivityInstanceState
WMOpenActivityInstancesList
WMFetchActivityInstance
WMCloseActivityInstancesList
WMGetActivityInstance
WMOpenActivityInstanceAttributesList
WMFetchActivityInstanceAttribute
WMCloseActivityInstanceAttributesList
WMGetActivityInstanceAttributeValue
WMAssignActivityInstanceAttribute

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:
• All Audit Events related to state and attribute changes of Activity Instances, described by the Audit Data

Types ‘Change Activity Instance State’ and ‘Assign Activity Instance Attributes’

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 137 of 137
Copyright © 1993, 1999, The Workflow Management Coalition

10.3.6 WMIsActivityAdminProfileSupported

NAME

WMIsActivityAdminProfileSupported - Connect to the WFM Engine for this series of interactions

DESCRIPTION

The WMIsActivityAdminProfileSupported informs the user application that this WFMC
implementation fully supports all the Activity Admin functions that comprise the Activity Admin
Conformance Profile.

INTENDED USE

Implementation of this conformance profile allows a client application to support global
manipulation of activity instances by an administrator. Contrast this set with the Activity Control
Status functions which work only on individual activity instances.

WMTErrRetType WMIsActivityAdminProfileSupported()

Argument Description

No Arguments

ERROR RETURN VALUE

WM_TRUE - If Conformance Profile is supported
WM_FALSE - If Conformance Profile is not supported.

ACTIVITY ADMIN CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Activity Admin Conformance Profile:

WMConnect
WMDisconnect
WMChangeActivityInstancesState
WMAssignActivityInstancesAttribute
WMOpenProcessDefinitionsList
WMFetchProcessDefinition
WMCloseProcessDefinitionsList
WMOpenActivityInstanceStatesList
WMFetchActivityInstanceState
WMCloseActivityInstanceStatesList
WMOpenActivityInstanceAttributesList
WMFetchActivityInstanceAttribute
WMCloseActivityInstanceAttributesList

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by an
implementation that is compliant with the Audit Data Profile:
• All Audit Events related to state and attribute changes of Activity Instances, described by the Audit Data

Types ‘Change Activity Instance State’ and ‘Assign Activity Instance Attributes’

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 138 of 138
Copyright © 1993, 1999, The Workflow Management Coalition

10.3.7 WMIsEntityHandlerProfileSupported

NAME

WMIsEntityHandlerProfileSupported - Connect to the WFM Engine for this series of interactions

DESCRIPTION

The WMIsEntityHandlerProfileSupported informs the user application that this WFMC
implementation fully supports all the Entity Handler functions that comprise the Entity Handler
Conformance Profile.

INTENDED USE

Implementation of this conformance profile provides entity handler functionality to a client
application..

WMTErrRetType WMIsEntityHandlerProfileSupported()

Argument Description

No Arguments

ERROR RETURN VALUE

WM_TRUE - If Conformance Profile is supported
WM_FALSE - If Conformance Profile is not supported.

ENTITY HANDLER CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Entity Handler Conformance Profile:

WMConnect
WMDisconnect
WMOpenProcessDefinitionsList
WMFetchProcessDefinition
WMCloseProcessDefinitionsList
WMCreateEntity
WMAddEntity
WMOpenEntitiesList
WMOpenOwnedEntitiesList
WMFetchEntity
WMCloseEntitiesList
WMRemoveEntity
WMDeleteEntity

10.3.8 WMIsAuditRecordProfileSupported

NAME

WMIsAuditRecordProfileSupported - Connect to the WFM Engine for this series of interactions

DESCRIPTION

The WMIsAuditRecordProfileSupported informs the user application that this WFMC
implementation fully supports all the Audit Record capabilities for all other implemented
Conformance Profiles.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 139 of 139
Copyright © 1993, 1999, The Workflow Management Coalition

INTENDED USE

Implementation of this conformance profile provides audit record support for the other
conformance profiles.

WMTErrRetType WMIsAuditRecordProfileSupported()

Argument Description

No Arguments

ERROR RETURN VALUE

WM_TRUE - If Conformance Profile is supported
WM_FALSE - If Conformance Profile is not supported.

AUDIT RECORD CONFORMANCE PROFILE FUNCTION

The following guidelines apply to the Audit Record Conformance Profile:

An implementation of any of the previous WAPI 2 Conformance Profiles may optionally include
implementation of the Audit Record requirement for that Profile’s functions. In order to be conformant
with the Audit Record Specification for this interface, the vendor must implement Audit Records for each
implemented Profile. For example, if a vendor has a conforming implementation of both the WorkList
Handler and the Process Control and Status profiles, they must implement Audit Records for both profiles
in order to achieve Audit Record Specification Conformance.

10.3.9 WMToolAgentProfileSupported

NAME

WMToolAgentProfileSupported – Connects and supports different Tool Agents to enable application
invokation

DESCRIPTION

The WMToolAgentProfileSupported informs the user application that this WFMC
implementation fully supports application invokation via the Tool Agent architecture model.

INTENDED USE

Implementation of this conformance profile provides an interface to integrate application control
mechanisms for workflow integration reasons.

WMTErrRetType WMToolAgentProfileSupported()

Argument Description

No Arguments

ERROR RETURN VALUE

WM_TRUE - If Conformance Profile is supported
WM_FALSE - If Conformance Profile is not supported.

TOOL AGENT CONFORMANCE PROFILE FUNCTION

The following guidelines apply to the Tool Agent Conformance Profile:

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 140 of 140
Copyright © 1993, 1999, The Workflow Management Coalition

An implementation of any of the previous WAPI 2 Conformance Profiles may optionally include
implementation of the Tool Agent requirement for that Profile’s functions. In order to be conformant with
the Tool Agent Specification for this interface, the vendor must implement Tool Agent interfaces, which
enable application invokation via the implemented Profile.
The following functions comprise the Tool Agent Conformance Profile:

WMTAConnect
WMTADisconnect
WMTAInvokeApplication
WMTARequestAppStatus
WMTATerminateApp

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 141 of 141
Copyright © 1993, 1999, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 142 of 142
Copyright © 1993, 1999, The Workflow Management Coalition

11. Appendix F: Workflow Definition Functions
The following describes a new set of functions that deals with definition of workflow models.
The first section describes an abstract machinery for handling of building blocks of workflow models -
abstract entities. Entity handling functions include creating and deleting entities as well as functions to get
and set their attributes.
An entity can be whatever a specific vendor supports as building block for a workflow definition; however,
a basic set of entity types that should always be supported (i.e., those corresponding to the Instances that
can be accessed via the Application Client Interface) is defined in the documentation of Process Definition
Interchange documentation (Interface-1) .
The middle piece of this chapter deals with connecting the abstract machinery of entities to the objects
already introduced in this specification: entities are owned either by an Enactment Service or by a particular
Process Definition; functions are described that enable editing of workflow objects in the context of an
Enactment Service or a concrete Process Definition.
Due to the generic architecture of Workflow Definition Functions, implementations have to obey the
semantical structure of the Process Definition Interchange Process Model as defined in the documentation
of Interface-1, Process Definition Interchange Interface [Process Definition Interchange Process Model,
WfMC TC-1016] .

A list of attributes of Process Model Entities is provided with the documentation of the Process Definition
Interchange documents [Process Definition Attribute List, WfMC TC-1019].

11.1 Entity Handling functions

The following defines a set of generic functions which treat all objects maintained by an Enactment Service
as Entities, ignoring their specific semantics in a Workflow context. All entities have an identifier, a name
and a type and other, type specific attributes. The ID is unique within a scope and remains constant from
session to session, and from client to client. The ID is used to allow entities to refer to each other in a
persistent way.

11.1.1 Entity Data Types
typedef struct
{

WMTEntityID entity_id;
WMTText entity_type[NAME_STRING_SIZE];
WMTText entity_name[NAME_STRING_SIZE];
void * entity_private_data;

} WMTEntity;

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 143 of 143
Copyright © 1993, 1999, The Workflow Management Coalition

11.1.2 WMCreateEntity

NAME

WMCreateEntity - Creates a new entity.

DESCRIPTION

This is how new entities are created that compose the workflow definition. The entity created is a workflow
persistent entity. The structure for the new entity will be returned. The entity is scoped either by the context
of an enactment service or by another entity.

WMTErrRetType WMCreateEntity (
in WMTPSessionHandle psession_handle,
in WMTPEntity scoping_entity,
in WMTName entity_class,
in WMTName entity_name,
out WMTPEntity entity)

Argument Description

psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

scoping_entity The entity that owns the new entity
entity_class The vendor defined entity class that is to be created. Specifies what class of

entity is to be created.
entity_name The user defined name provided for this entity.
entity Pointer to a buffer which will receive the entity structure.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SCOPE
WM_INVALID_CLASS
WM_READONLY_CLASS

11.1.3 WMOpenEntitiesList

NAME

WMOpenEntitiesList - Specifies and opens the query to produce a list of all entities (owned by a specific
entity) that meet the selection criterion of the filter.

DESCRIPTION

This command directs the WFM Engine to open the query to provide a list of entities which are available to
a particular workflow participant, some of which may be modifiable by the participant. A typical usage for
this operation is to get a list of all entities of a specific entity_type within a certain process model.
This command will return a query handle for a list of entities that match the specified value for the attribute.
The command will also return, optionally, the total count of entities available. If the count is requested and
the implementation does not support it, the command will return a pcount value of -1. If
pentity_def_filter is NULL, then the function, with the corresponding fetch calls will return the list of
ALL entities in a given scope.

WMTErrRetType WMOpenEntitiesList (
in WMTPSessionHandle psession_handle,
in WMTPEntity scoping_entity,
in WMTPFilter pentity_def_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 144 of 144
Copyright © 1993, 1999, The Workflow Management Coalition

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
scoping_entity The entity that represents the scope of entities to be included in the query result
pentity_def_filter Filter associated with the entities.
count_flag Boolean flag that indicates if the total count of entities should be returned.
pquery_handle Pointer to a structure containing a unique query information.
Pcount Total number of entities that fulfill the filter condition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER
WM_INVALID_SCOPE

REQUIREMENTS

No requirements are assumed to exist with regard to the type of process model. No requirements are
assumed to exist with regard to how workflow participant’s are identified within the WFM Engine.

RATIONALE FOR API

This command and the corresponding fetch calls allows a workflow participant to retrieve the entities which
a workflow participant is authorized to work on.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 145 of 145
Copyright © 1993, 1999, The Workflow Management Coalition

11.1.4 WMFetchEntity

NAME

WMFetchEntity - Returns the next entity from the set of entities that met the selection criterion stated in
the WMOpenEntitiesList call.

DESCRIPTION

This command directs the WFM Engine to provide one entity from the list of entities which are available to
a particular workflow participant, some of which may be modifiable by the participant. It is assumed that
not all processes in an organization may be modified by all workflow participants. This fetch function, as
well as all other fetch functions in this API, will return subsequent items after every call, one at a time. The
fetch process is complete when the function returns the error WM_NO_MORE_DATA. The sort order in which the
items are returned is specific of the workflow engine servicing the call, no specific order should be
assumed.
WMTErrRetType WMFetchEntity (

in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPEntityID entity_id)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the WMOpenEntitiesList

query command.
entity_id Id of the next entity.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ENTITY
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 146 of 146
Copyright © 1993, 1999, The Workflow Management Coalition

11.1.5 WMCloseEntitiesList

NAME

WMCloseEntitiesList - Closes the query of entities.

DESCRIPTION

WMTErrRetType WMCloseProcessModelEntitiesList(
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the WMOpenEntitiesList

query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 147 of 147
Copyright © 1993, 1999, The Workflow Management Coalition

11.1.6 WMDeleteEntity

NAME

WMRemoveEntity - Deletes an entity.

DESCRIPTION

WMTErrRetType WMDeleteEntity (
in WMTPSessionHandle psession_handle,
in WMTPEntity scoping_entity,
in WMTPEntityID entity_id)

Argument Description

psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

scoping_entity The entity that owns the entity to be deleted
entity_id Pointer to the unique id of the entity being deleted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SCOPE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 148 of 148
Copyright © 1993, 1999, The Workflow Management Coalition

11.2 Entity Attribute Manipulation

Every entity has attributes which contain specific information about the entity. These values are accessed
via the WMGetEntityAttributeValue and WMSetEntityAttributeValue commands. Standard attributes will
be defined for each standard entity type, and there will be other attributes that vendors will wish to
implement specifically for their systems. In this way the entities are extensible by vendors.
Some attributes contain scalar values, and others contain a collection of values. The multi valued attributes
are called “attribute lists” in this document. The values in an attribute list are accessed through the
following functions: WMOpenEntityAttributeValueList, WMFetchEntityAttributeValue,
WMCloseEntityAttributeValueList. The open command returns a query handle which is used to fetch
subsequent values. Multi-valued attributes are updated though the use of WMClearEntityAttributeList and
WMAddEntityAttributeValue.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 149 of 149
Copyright © 1993, 1999, The Workflow Management Coalition

11.2.1 WMOpenEntityAttributesList

NAME

WMOpenEntityAttributesList - Specifies and opens the query to produce the list of attributes for a
specific entity that match the filter criterion.

DESCRIPTION

This command will return a query handle for a list of attributes for an entity. The command will also return,
optionally, the total count of attributes available. If the count is requested and the implementation does not
support it, the command will return a pcount value of -1.
One of the uses of this API, together with the corresponding fetch and close calls is to allow a workflow
application to query the Workflow Engine for the available attributes that are defined for an entity, in order
to offer this list to the application user.. If pentity_attr_filter is NULL, then the function, with the
corresponding fetch calls will return the list of ALL attributes available for the entity.

WMTErrRetType WMOpenEntityAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPEntity scoping_entity,
in WMTEntity_Id entity_id,
in WMTPFilter pentity_attr_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pquery_handle,
out WMTPInt32 pcount)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

scoping_entity The entity that scopes the entity
entity_id

pentity_attr_filter Filter associated with the entity attributes.
count_flag Boolean flag that indicates if the total count of entity attributes should

be returned.
pquery_handle Pointer to a structure containing a unique query information.
pcount Total number of attributes for this entity.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ENTIY

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 150 of 150
Copyright © 1993, 1999, The Workflow Management Coalition

11.2.2 WMFetchEntityAttribute

NAME

WMFetchEntityAttribute - Returns the next entity attribute from the list of attributes that match the filter
criterion.

DESCRIPTION

This command returns an entity attribute. This fetch function will return subsequent entity attributes after
every call. The fetch process is complete when the function returns the error WM_NO_MORE_DATA. The
function will return attribute name and its type and length; valid types are all WMT data types defined
below in this document plus
• expressions of the form ListOf(Entity_Class) where Entity_Class is a string, identifying an entity class

supported by the Enactment Service
• expressions of the form ListOf(Data_Type) where Data_Type is one of the basic WMT types
Values of attributes of type List are handled using the WMT...EntityAttributeValuesList operations
described below.

WMTErrRetType WMFetchEntityAttribute (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPAttrName pattribute_name,
out WMTPInt32 pattribute_type,
out WMTPInt32 pattribute_length,
in WMTInt32 buffer_size)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this
action.

pquery_handle Identification of the specific query handle returned by the
WMOpenEntityAttributesList query command.

pattribute_name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.
buffer_size Size of the buffer.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_NO_MORE_DATA

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 151 of 151
Copyright © 1993, 1999, The Workflow Management Coalition

11.2.3 WMCloseEntityAttributesList

NAME

WMCloseEntityAttributesList - Closes the query for entity attributes.

DESCRIPTION

WMTErrRetType WMCloseEntityAttributesList (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pquery_handle Identification of the specific query handle returned by the

WMOpenEntityAttributesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 152 of 152
Copyright © 1993, 1999, The Workflow Management Coalition

11.2.4 WMGetEntityAttributeValue

NAME

WMGetEntityAttribute - Retrieves an attribute from an entity.

DESCRIPTION

Returns the value of the attribute named. See WMOpenEntityAttributeValueList to get all of the elements
of a multi-valued attribute. The value of the attribute named is copied into the attribute_value buffer
specified. If the buffer is not large enough for the entire value, then only the part that fits will be placed in
the buffer, but no error will result. The attribute_length will return the correct length of the attribute value,
not necessarily the amount of data returned.

WMTErrRetType WMGetEntityAttributeValue (
in WMTPSessionHandle psession_handle,
in WMTPEntity scoping_entity,
in WMTPEntity entity_handle,
in WMTPAttrName attribute_name,
out WMTInt32 attribute_type,
out WMTInt32 attribute_length,
out WMTPVoid pattribute_value,
in WMTInt32 buffer_size)

Argument Description

psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

entity_handle Pointer to the entity structure from which the attribute is being retrieved.
attribute_name The name of the attribute from which to retrieve the value.
attribute_type Returns the type of the value that has been returned.
attribute_length Returns the length of the value in the attribute
pattribute_value A pointer to a buffer which will receive the value of the attribute.
buffer_size The size of the buffer. This value used by the API to restrict writing of data to

this length.

ERROR RETURN VALUE

WM_SUCCESS
WM_NOT_SINGLE_VALUED

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 153 of 153
Copyright © 1993, 1999, The Workflow Management Coalition

11.2.5 WMOpenEntityAttributeValueList

NAME

WMOpenEntityAttributeValueList - opens a multi-valued attribute on an entity for retrieving each of the
values individually. The type of a value from the attribute is returned. A query handle is returned to fetch
the individual values from. The count of items in the collection is optional.
If the name of a single valued attribute is given, an error will result.

DESCRIPTION

WMTErrRetType WMOpenEntityAttributeValueList(
in WMTPSessionHandle psession_handle,
in WMTPEntity scoping_entity,
in WMTPEntity entity_handle,
in WMTPAttrName attribute_name,
out WMTInt32 attribute_type,
out WMTPQueryHandle query_handle,
out WMTPInt32 pcount)

Argument Description

psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

entity_handle Pointer to the struct representing the entity.
attribute_name The name of the multi-valued attribute to retrieve values from.
attribute_type The collection of values as assumed to be of the same type since a collection is

just a multi-valued attribute, so the collection_type is really the type of a single
value in the collection.

query_handle This query handle is used for WMFetchEntityCollectionValue and
WMCloseEntityCollection

pcount The number of values held in this attribute. This is optional. The value of
negative one (-1) will indicate that the value is not supported.

ERROR RETURN VALUE

WM_SUCCESS
WM_NOT_MULTI_VALUED

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 154 of 154
Copyright © 1993, 1999, The Workflow Management Coalition

11.2.6 WMFetchEntityAttributeValue

NAME

WMFetchEntityAttributeValue - Retrieves an attribute from an entity.

DESCRIPTION

WMTErrRetType WMFetchEntityAttributeValue(
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTInt32 attribute_length,
out WMTPVoid pattribute_value,
in WMTInt32 buffer_size)

Argument Description

psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

pquery_handle Pointer to the query structure created with WMOpenEntityCollection
attribute_length Returns the length of the value in the attribute
pattribute_value A pointer to a buffer which will receive the value of the attribute.
buffer_size The size of the buffer. This value used by the API to restrict writing of data to

this length.

ERROR RETURN VALUE

WM_SUCCESS

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 155 of 155
Copyright © 1993, 1999, The Workflow Management Coalition

11.2.7 WMCloseEntityAttributeValueList

NAME

WMCloseEntityAttributeValueList - Closes the query handle used to retrieve a collection (a multi-valued
attribute).

DESCRIPTION

WMTErrRetType WMCloseEntityAttributeValueList(
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle)

Argument Description

psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

pquery_handle Pointer to the query structure created with WMOpenEntityCollection

ERROR RETURN VALUE

WM_SUCCESS

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 156 of 156
Copyright © 1993, 1999, The Workflow Management Coalition

11.2.8 WMAssignEntityAttributeValue

NAME

WMAssignEntityAttributeValue - Set an attribute of an entity.

DESCRIPTION

WMTErrRetType WMAssignEntityAttributeValue (
in WMTPSessionHandle psession_handle,
in WMTPEntity entity_handle,
in WMTPAttrName attribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Description

Psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

entity_handle Pointer to the entity structure from which the attribute is being retrieved.
Attribute_name The name of the attribute to put the value into.
Attribute_type The type of the value.
Attribute_length The length of the value in the buffer.
Pattribute_value A pointer to a buffer which contains the value of the attribute.

ERROR RETURN VALUE

WM_SUCCESS
WM_NOT_SINGLE_VALUED

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 157 of 157
Copyright © 1993, 1999, The Workflow Management Coalition

11.2.9 WMClearEntityAttributeList

NAME

WMClearEntityAttributeList - Deletes all of the values in a multi-valued attribute.

DESCRIPTION

WMTErrRetType WMClearEntityAttributeList(
in WMTPSessionHandle psession_handle,
in WMTPEntity entity_handle,
in WMTPAttrName attribute_name
)

Argument Description

Psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

entity_handle Pointer to the entity structure from which the attribute is being erased.
Attribute_name The name of the attribute to be cleared out.

ERROR RETURN VALUE

WM_SUCCESS
WM_NOT_MULTI_VALUED

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 158 of 158
Copyright © 1993, 1999, The Workflow Management Coalition

11.2.10 WMAddEntityAttributeValue

NAME

WMAddEntityAttributeValue - Add a value to a multi-valued attribute of an entity.

DESCRIPTION

WMTErrRetType WMAddEntityAttributeValue(
in WMTPSessionHandle psession_handle,
in WMTPEntity entity_handle,
in WMTPAttrName attribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPVoid pattribute_value
)

Argument Description

Psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

entity_handle Pointer to the entity structure from which the attribute is being retrieved.
Attribute_name The name of the collection (multi-valued attribute) to add the value into.
Attribute_type The type of the value.
Attribute_length The length of the value in the buffer.
Pattribute_value A pointer to a buffer which contains the value of the attribute.

ERROR RETURN VALUE

WM_SUCCESS
WM_NOT_MULTI_VALUED

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 159 of 159
Copyright © 1993, 1999, The Workflow Management Coalition

11.3 Process Modelling Functions

The following set of functions supports creation and modification of a workflow process model. A process
model is made up from building blocks called process definition entities in this specification. Examples for
process definition entities are Activity Definitions (the nodes of a process model, which become Activity
Instances when the process model is executed) and Transitions (the connections between Activity
Definitions). The generic entity handling functions defined above can be applied to modify the contents of
a process model. A standard set of such entities, which is obtained from the WfMC Process Definition
Specification document is described in the next section

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 160 of 160
Copyright © 1993, 1999, The Workflow Management Coalition

11.3.1 WMOpenWorkflowDefinition

NAME

WMOpenWorkflowDefinition - Prepares for editing of workflow definition entities (i.e., on the
Enactment Service scope level).

DESCRIPTION

This command tell the Enactment Service to prepare for editing of workflow definition entities it controls.
This is the starting point for getting all of the entities that compose workflow definitions. This entity will
form the scoping entity for most of the requests for further entities controled by the Enactment Service.

WMTErrRetType WMOpenWorkflowDefinition (
in WMTPSessionHandle psession_handle,
in WMTText name(NAME_STRING_SIZE)
in WMTText scope(NAME_STRING_SIZE)
out WMTPEntity workflow_definition_handle
)

Argument Description

Psession_handle Pointer to the structure with the session information created by a call
to WMConnect.

Name Identifier of the editing context
Scope Scope of editing context
Workflow_definition_handle Handle of the entity representing the workflow editing context. This

entity will be used as scoping entity for subsequent editing on entities
owned by the Enactment Service. The entity has type ‘workflow
definition’, name taken from the second input parameter, and no
additional attributes.

ERROR RETURN VALUE

WM_SUCCESS

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 161 of 161
Copyright © 1993, 1999, The Workflow Management Coalition

11.3.2 WMCloseWorkflowDefinition

NAME

WMCloseWorkflowDefinition - Allows the system to free up any resources that are maintained to handle
requests for entities within theEnactment Service.

DESCRIPTION

WMTErrRetType WMCloseWorkflowDefinition(
in WMTPSessionHandle psession_handle,
in WMTPEntity workflow_definition_handle
)

Argument Description

Psession_handle Pointer to the structure with the session information created by a call
to WMConnect.

Workflow_definition_handle Pointer to an entity structure which represents the contents of the
Enactnemtn Service. It is assumed that all entities within the scope of
this context become inaccessible once the workflow definition is
closed.

ERROR RETURN VALUE

WM_SUCCESS

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 162 of 162
Copyright © 1993, 1999, The Workflow Management Coalition

11.3.3 WMCreateProcessDefinition

NAME

WMCreateProcessDefinition - creates a new process definition

DESCRIPTION

Creates an entity for a new empty process definition within the system. The empty process definition can
then have entities created within it.
WMTErrRetType WMCreateProcessDefinition(

in WMTPSessionHandle psession_handle,
out WMTPProcDefID pproc_def_id
)

Argument Description

Psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

pproc_def_id Pointer to the new process definition id for the process definition to create.

ERROR RETURN VALUE

WM_SUCCESS

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 163 of 163
Copyright © 1993, 1999, The Workflow Management Coalition

11.3.4 WMDeleteProcessDefinition

NAME

WMDeleteProcessDefinition - deletes a process definition

DESCRIPTION

DELETES a process definition from the scope defined by the current session.
WMTErrRetType WMDeleteProcessDefinition(

in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id
)

Argument Description

Psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

pproc_def_id Pointer to the process definition to be deleted

ERROR RETURN VALUE

WM_SUCCESS

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 164 of 164
Copyright © 1993, 1999, The Workflow Management Coalition

11.3.5 WMOpenProcessDefinition

NAME

WMOpenProcessDefinition - Prepares for editing of a process model.

DESCRIPTION

This command tell the Enactment Service to prepare for editing of the specified process model. This is the
starting point for getting all of the entities that compose the process definition itself. This entity will form
the scoping entity for most of the requests for further entities within the process definition.

WMTErrRetType WMOpenProcessDefinition (
in WMTPSessionHandle psession_handle,
in WMTPProcDefinition proc_definition
out WMTPEntity proc_model_handle
)

Argument Description

Psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

proc_definition Process Definition to be edited
proc_model_handle Handle of the entity representing the process model. This entity will be used as

scoping entity for subsequent editing on the process definition

ERROR RETURN VALUE

WM_SUCCESS

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 165 of 165
Copyright © 1993, 1999, The Workflow Management Coalition

11.3.6 WMCloseProcessDefinition

NAME

WMCloseProcessDefinition - Allows the system to free up any resources that are maintained to handle
requests for entities within the process definition.

DESCRIPTION

WMTErrRetType WMCloseProcessDefinition(
in WMTPSessionHandle psession_handle,
in WMTPEntity proc_model_handle
)

Argument Description

Psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

proc_model_handle Pointer to an entity structure which represents the contents of the process
definition. It is assumed that all entities within the scope of this process
definition become inaccessible once the process definition is closed.

ERROR RETURN VALUE

WM_SUCCESS

11.4 Standard Process Modelling Entity Types

The following describes the standard entity types that should be supported by every Workflow Engine and
their respective attributes (mandatory and optional); specific implementations may have additional types
and additional attributes for each type. The types are ProcessDefinition, ActivityDefinition, Transition,
Participant, Application and ProcessData. The entity types and their attributes are taken from the WfMC
specification of the Process Definition Interface, which describes the Workflow Process Definition
Language (WPDL); please refer to this document for further details. Some changes have been made to
adjust the attribute names used by WPDL to those used in the Workflow Client Application Interface
specification.

11.4.1 Additional Data Types
typedef struct
{

WMTText name[NAME_STRING_SIZE];
}WMTName;

typedef struct
{

WMTText date[NAME_STRING_SIZE];
}WMTDate;

typedef struct
{

WMTInt32 duration;
}WMTDuration;

typedef struct
{

WMTInt32 cost;
}WMTCost;

typedef struct
{

WMTText documentation[1024];
}WMTDocumentation;

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 166 of 166
Copyright © 1993, 1999, The Workflow Management Coalition

typedef struct
{

WMTText expression[256];
}WMTCondExpression; // Condition expresson. To be refined using expression grammmar

typedef struct
{

WMTText expression[256];
}WMTPartExpression; // Participant expresson. To be refined using expression grammmar

typedef struct
{

WMTText expression[256];
}WMTApplicationSpec; // Application identification. To be refined...

Attribute structure used by ProcessData entity type to define complex data structures; attribute value might
hold ProcessDataID if type is COMPLEX, default value otherwise.

typedef struct
{

WMTText attribute_name[NAME_STRING_SIZE];
WMTInt32 attribute_type; // type of the attribute
WMTInt32 attribute_length; // length of the attribute value
WMTPText pattribute_value; // pointer to the attribute value

}WMTAttribute;

11.4.1.1 WMAddTransition

NAME

WMAddTransition - Adds a transition definition to a process model.

DESCRIPTION

This command will return a transition definition entity owned by the process definition that is passed as
second parameter, connecting the activity definition entities passed as third and fourth parameter.

WMTErrRetType WMAddTransition (
in WMTPSessionHandle psession_handle,
in WMTPProcModelID pproc_model_id,
in WMTPActDefID psource_act_def_id,
in WMTPActDefID ptarget_act_def_id,
out WMTPEntity entity_handle
)

Argument Description

psession_handle Pointer to the structure with the session information created by a call to
WMConnect.

pproc_model_id Pointer to the process model owning the new transition
psource_act_def_id Pointer to the source activity definition of the transition
ptarget_act_def_id Pointer to the target activity definition of the transition
entity_handle Pointer to a buffer which will receive the structure which represents a transition

ERROR RETURN VALUE

WM_SUCCESS

11.4.1.2 WMAddProcessDataAttribute

NAME

WMAddProcessDataAttribute - Adds an attribute to the list of attributes that define the data structure.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 167 of 167
Copyright © 1993, 1999, The Workflow Management Coalition

DESCRIPTION

WMTErrRetType WMAddProcessDataAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcModID pproc_model_id,
in WMTPProcDataID pproc_data_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_model_id Pointer to a structure containing the process model entity ID.
pproc_data_id Pointer to a structure containing the process data definition identification for

which the attribute will be assigned.
pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattribute_value Pointer to a buffer area provided by the client application where the attribute

value will be placed. Can be identifier of another process data entity.

ERROR RETURN VALUE

WM_SUCCESS

11.4.1.3 WMRemoveProcessDataAttribute

NAME

WMRemoveProcessDataAttribute - Removes an attribute from the list of attributes that define the data
structure.

DESCRIPTION

WMTErrRetType WMRemoveProcessDataAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcModID pproc_model_id,
in WMTPProcDataID pproc_data_id,
in WMTPAttrName pattribute_name)

Argument Name Description

psession_handle Pointer to a structure containing information about the context for this action.
pproc_model_id Pointer to a structure containing the process model entity ID.
pproc_data_id Pointer to a structure containing the process data definition identification for

which the attribute will be assigned.
pattribute_name Pointer to the name of the attribute. Must be uique within the data structure.

ERROR RETURN VALUE

WM_SUCCESS

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 168 of 168
Copyright © 1993, 1999, The Workflow Management Coalition

12. Appendix G: States
The following describes above a set of standard valid states for each of the major workflow objects defined
in this document. States are organized into several levels of granularity, lower level states refining higher-
level ones. An implementation of the Enactment Service might choose to support states on any level of
granularity, omit states and add additional states to the list defined below. A state for a particular workflow
object can be identified by its name only or by specifying its full name including its super-state parents
using dot notation; for examples see the section on Process Instance states below.

12.1 Process Instance States

The top level of states for a Process Instance distinguishes two states, open and closed. The open state has
two sub-states, running and notRunning; notRunning in turn has two sub-states, notStarted and suspended.
The following list describes the states in detail:
• open - the Process Instance is being enacted
• open.running - the Process Instance is executing
• open.notRunning - the Process Instance is temporarily not executing
• open.notRunning.notStarted - the Process Instance has been created, but was not started yet
• open.notRunning.suspended - execution of the Process Instance was temporarily suspended
• closed - enactment of the Process Instance has been finished
• closed.aborted - enactment of the Process Instance has been aborted by a user (see the specification of

WMAbortProcessInstance for a definition of abortion in contrast to termination)
• closed.terminated - enactment of the Process Instance has been terminated by a user (see the

specification of WMTerminateProcessInstance for a definition of termination in contrast to abortion)
• closed.completed - enactment of the Process Instance has completed normally (i.e., was not forced by a

user)

An implementation might decide to support refinement of states to a certain level only or omit certain states;
valid sets of states include for example:

• open and closed
• notRunning, running and closed
• notStarted, running, completed and terminated
• ...

The following diagram shows the states and potential state-transitions; transitions are shown for the bottom-
level states only, transitions between the higher-level states can be deduced from that easily; e.g., there is a
transition from open to closed or from notRunning to running, but no transition backwards in both cases.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 169 of 169
Copyright © 1993, 1999, The Workflow Management Coalition

notStarted

running

suspended

completed

aborted

terminated

open closed

notRunning

Here is a short discussion of the various state-transitions:
• When a Process Instance is created it will take its intial state, which is open.notRunning.notStarted (or

just open, or open.notRunning depending on the level of granularity supported)
• Transitions can be made from notRunning states to the running state; transitions from the running to the

notRunning super-state can be made to the suspended sub-state only.
• When enactment of a Process Instance is finished, its state will take one of the flavours of the closed

state, depending on the way of ending enactment (normally completed, terminated or aborted). The
completed state can only be reached from the running state since it represents normal completion of the
Process Instance; the other closed sub-states are reached via the WMAbrtProcessInstance or
WMTerminateProcessInstance operations.

• The closed state is a final state, i.e., there is no transition from a closed state to an open state.

12.2 Activity Instance States

The top level of states for an Activity Instance distinguishes two states, open and closed. The open state has
three sub-states, running, notRunning; and suspended. The following list describes the states in detail:
• open - the Activity Instance is active
• open.running - the Activity Instance is executing
• open.notRunning - the Activity Instance is ready, but has not been started yet
• open..suspended - execution of the Activity Instance was temporarily suspended
• closed - enactment of the Activity Instance has been finished
• closed.aborted - enactment of the Activity Instance has been aborted, probably due to abortion of the

owning Process Instance (see the specification of WMAbortProcessInstance for a definition of abortion
in contrast to termination)

• closed.terminated - enactment of the Activity Instance has been terminated , probably due to
termination of the owning process instance (see the specification of WMTerminateProcessInstance for a
definition of termination in contrast to abortion)

• closed.completed - enactment of the Activity Instance has completed normally (i.e., was not forced by a
user or by a state change of its owning Process Instance)

The following diagram shows the states and potential state-transitions; transitions are shown for the bottom-
level states only, transitions between the higher-level states can be deduced from that easily.

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 170 of 170
Copyright © 1993, 1999, The Workflow Management Coalition

notRunning

running

suspended

completed

aborted

terminated

open closed

Here is a short discussion of the various state-transitions:
• When an Activity Instance is created it will take its intial state, which is open.notRunning
• Transitions between the notRunning and the suspended states are in general initiated by the Enactment

Service, triggered by a corresponding state change of the owning Process Instance; they could also be
triggered via the WMChangeActivityInstanceState operation.

• Transitions between the notRunning and the running state might be initated by the Application Client
user via the WMGetWorkitem operation, but this is up to the specific Enactment Service; otherwise the
transition is either initiated by the Enactment Service or by the Application Client user via the
WMChangeWorkitemState or WMChangeActivityState operation.

• Transitions between the running and the suspended state are in general initiated by the Enactment
Service as a result of a corresponding state change of the owning Process Instance; an Enactment service
might allow this transition to be performed as a result of the WMChangeWorkitemState or via the
WMChangeActivityInstanceState operation also.

• When enactment of an Activity Instance is finished it’s state will take one of the flavours of the closed
state, depending on the way of ending enactment (normally completed, terminated or aborted). The
completed state can only be reached from the running state since it represents normal completion of the
Activity Instance.

• The closed state is a final state, i.e., there is no transition from a closed state to an open state.

12.3 Workitem States

The top level of states for a Workitem distinguishes two states, open and closed. The open state has three
sub-states, running, notRunning; and suspended. The following list describes the states in detail:
• open - the Workitem is active
• open.running - the Workitem is executing
• open.notRunning - the Workitem is assigned to a participant, but has not been started yet
• open..suspended - execution of the Workitem was temporarily suspended
• closed - enactment of the Workitem has been finished
• closed.aborted - enactment of the Workitem has been aborted, probably due to abortion of the owning

Process Instance (see the specification of WMAbortProcessInstance for a definition of abortion in
contrast to termination)

Workflow Management Application Programming Interface (Interface 2&3) 01-July-98

Version 2.0 Page 171 of 171
Copyright © 1993, 1999, The Workflow Management Coalition

• closed.terminated - enactment of the Workitem has been terminated , probably due to termination of the
owning process instance (see the specification of WMTerminateProcessInstance for a definition of
termination in contrast to abortion)

• closed.completed - enactment of the Workitem has completed normally (i.e., was not forced by a user or
by a state change of its owning Process Instance)

The following diagram shows the states and potential state-transitions; transitions are shown for the bottom-
level states only, transitions between the higher-level states can be deduced from that easily.

notRunning

running

suspended

completed

aborted

terminated

open closed

Here is a short discussion of the various state-transitions:
• When an Workitem is created it will take its intial state, which is open.notRunning
• Transitions between the notRunning and the suspended state are in general initiated by the Enactment

Service as a result of a corresponding state change of the owning Process Instance; an Enactment service
might decide to allow this transition to be performed via the WMChangeWorkitemState operation also.

• Transitions between the notRunning and the running state might be initated by the Application Client
user via the WMGetWorkitem operation, but this is up to the specific Enactment Service; otherwise the
transition is either initiated by the Enactment Service or by the Application Client user via the
WMChangeWorkitemState operation or as a result of a WMChangeActivityInstanceState on the
associated Activity Instance.

• Transitions between the running and the suspended state are in general initiated by the Enactment
Service as a result of a corresponding state change of the owning Process Instance; an Enactment service
might decide to allow this transition to be performed via the WMChangeWorkitemState operation also.

• When enactment of an Workitem is finished it’s state will take one of the flavours of the closed state,
depending on the way of ending enactment (normally completed, terminated or aborted). The
completed state can only be reached from the running state (via the WMCompleteWorkitem operation)
since it represents normal completion of the Workitem.

• The closed state is a final state, i.e., there is no transition from a closed state to an open state.

