Warkflew Managemen: Coalition

The Workflow Management Coalition Specification

Workflow Management Coalition
Workflow Client Application (Interface 2)
Application Programming Interface
(WAPI)

Specification

Document Number WFM C-TC-1009

October-97
Version 2.0e (Beta)

Copyright (C) 1993, 1996 The Workflow Management Coalition

All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior written permission of the Workflow Management Coalition except that reproduction,
storage or transmission without permission is permitted if al copies of the publication (or portions
thereof) produced thereby contain a notice that the Workflow Management Coalition and its members are
the owners of the copyright therein.

This Specification has been authored by Workflow Management Coalition members.

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Workflow Management Coalition
PO Box 165, 2 Crown Walk
Winchester

Hampshire SO22 5XE

England

Tel: +44 1962 873401
Fax: +44 1962 868111

Email: wfmc@wfmc.org
www: http://www.wfmc.org

The "WfMC" logo and "Workflow Management Coalition" name are service marks of the
Workflow Management Coalition.

Neither the Workflow Management Coadlition nor any of its members make any warranty
of any kind whatsoever, express or implied, with respect to the Specification, including as
to non-infringement, merchantability or fitness for a particular purpose. This Specification
isprovided “asis’.

First printing, November 1995
Second printing, version 1.1, May 1996

Version 2.0 Page 2 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

0. CHANGE HISTORY oottt ettt e e e e s et e e e e e e s s eabb b e e e e e e e e s esaabbaeeeaeeessanbbaeeeeaaeaan 7
Lo PURPOSE ... ettt e e e et et e e e e e e e s e et b e e e e e e e e s ee bt baeeeaeeesaaabbbeeeeeeesaaaabraereeaeeeaanees 8
2. AUDIENCE.. ottt e e e e et e e e e e e e e e b e e e e e e e e aabrr e e e e e e e e aaabrrareaaaeaan 8
3. OVERVIEW ...ttt ettt e e e e e e ettt e e e e e e s e st b b e e e e e e e e e asaabbbeeeeeeessaasbbreeeeaeeaan 8
31 Application Interface DEfiNitiON...........coiiiiiiiii e 9
311 Purpose & BackgrOUNGc.ooiiioiieie ettt ettt b e sae e e sane e 9
3.2 (DS To ol a1 [0S o o])Y AP TR 10
33 DESIGN ASSUMPLIONSeeeieeitie ettt ettt ettt et ettt e aee e st e e sabe e e be e e abee e saeeesabeesmbeesbeeeabeeesnneas 10
34 (D15 [0 g N @ o 1= ol (A= RO OTRR 10
35 Defined Terms and ADDIeVIGLIONS.ceeiiiiiiiiiiieeee et e e e 10
3.6 REFErENCE DOCUMIENES........c ittt e e e e s et e e e e e e e s e eabb b b e e e e eeesssaabbaeeeeeeesennssbreeess 10
3.7 (0] 41011 1170 [o: T ESOUETRRRROPO 11
3.8 WAPI NamMiNg CONVENTIONS.uiiiuiieiieiaieeastie ettt e steesteeesiee e saee e sbeesbeeasbeeesaeeesaressbeesnseeesaeeas 11
A, WAPE DATA TYPES ... oottt e e e e e e e e et e e e e e e e s aabbaeeeeeeeseennrreeeeas 12
4.1 BaSIC WAPI DAl TYPES....eeeiuteeitee ettt e sie et et e ste e saee s abe e s be e s beeasbee e saee e sabeesabeesbeeaabeeesnneas 12
4.2 Other WAPI DEIA TYPESeee ettt iuteeetee ettt ettt sate e st e sbe e e sbee e saee e sabeasbeeabe e s abee e sneeesnbeasnneeanees 12
4.3 F AN 11] 01U | (=TSR OT PR 16
5. WAPI ERROR RETURN CODES........otttiiiiiiiiittieiee ettt s ettt e e e e satbaee e e e e e s snnnrbaeeeeaee s 17
6. WAPI DESCRIPTIONSttt ettt e et e e e e e e s e bbb e e e e e e e s s eabbaeeeeeeessensrbreeeaaeenan 19
6.1 WAPI CONNECLION FUNCLIONS.........ccutiiiie ettt e e e et r e e e e e e e e s enabbaeeeeaeeean 19
6.1.1 LA 1Y/ 0] 7o 22
6.2 WAPI Process CONtrol FUNCLIONSeeiiiiiiiiiiiieieee ettt e ettt e e e e e etbrre e e e e e e s sennbaeeeeaee s 23
6.2.1 WM OPENProcesSSDEfiNItIONSLISEeiiieiiiiieiie ettt 23
6.2.2 WMFetChProCESSDEfINITION......uveiiiii it e e 25
6.2.3 WM CI0SEPTOCESSDEfINItIONSLISE.......cco it e e e e 26
6.2.4 WMOPenProcessDefiNiti ONSIALESLISEccoieiiiiieiieeiiee e 27
6.2.5 WMFetChProceSsDEfiNITIONTALE........ccccvvveeeie et e e e e e 28
6.2.6 WMCI0seProcessDEfiNItIONSAtESLISEvveeiieeeiiccrieeee e 29
6.2.7 WMChangeProcessDEfiNItIONSTLALE.ccoiiiiiiieiiee e 30
6.2.8 VWIMICreatePr OCESSINSLANCE. s 31
6.2.9 RV LAY S T 00 32
6.2.10 WM TErMiNatEPT OCESSINSLANCE.cceeceiicitrieeee ettt e e e e e e e e e e e eeab e e e e e s eenbraeeeeeeeean 33
6.2.11 WMOPenProcessI NStaNCESIAIESLISEeiiiiieiie e 34
6.2.12 WMFEtChPrOCESSINSLANCESIALE.coicerireeeee ettt e et e e e e s nnbrreeeeeeean 35
6.2.13 WM CI0SEPTOCESSINSLANCEIALESLISE.......uvvveeeieee it e e e rre e e e 36
6.2.14 WMChangeProCeSSINSLANCESALE.ccocueiiiii ettt sbe e e sne e 37
6.2.15 WMOPenProcessI NStanCeAIIIDULESLISEeiriiie et 38
6.2.16 WMFetchProcessI NStanCEALITIDULE.vveeiieie e 39
6.2.17 WM CIl0seProcessI NstanCeALtribDULESLIS..........coi i 40
6.2.18 WMGEtProcess NStanCeAL I IDULEVAIUE............cooccuiveeeie et 41
6.2.19 WMASS NP 0CessINSLANCEALLT TDULEooiuiiiiii e 42
6.3 WAPI Activity Control FUNCLIONSoiiiiiiiiiee et 44
6.3.1 WMOPENACLIVItYI NSLANCESIAESLISEcoteiiiee ettt 44
6.3.2 WMFetChACHI VItYI NSEANCESIALE.. ...ttt 45
6.3.3 WMCI0SeACt Vit NSEANCEIALESLISE. ... veeeveeeieie ettt 46
6.34 WMChangeACtiVityl NSEANCESIALE.ccoveiiiee ettt 47
Version 2.0 Page 3 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.3.5 WMOPenACtiVityl NStANCEALLT TDULESLISEeeieiieiiee et 48
6.3.6 WMFetchACtiVityl NStanNCEALIITDULE.oiiiieie e 49
6.3.7 WMCIloseActivityl NStanCEALI TDULESLISE........eeeieiieiiee et 50
6.3.8 WMGetActivityl nStanCeAttribULEVAIUEooiei e 51
6.3.9 WMASSIgNACLi Vityl NSEANCEALIIIDULEoeieiiee e 52
6.4 WAPI Process StatUS FUNCLIONS.ooiviiiiiieiie ettt sttt e eeae e saee s 53
6.4.1 VWM OPENPT OCESSINSEANCESLISE ... eeetee ittt 54
6.4.2 WWIMFELChPT OCESSINSLANCE. ...ttt ettt ettt et sbe e e saee e sane e 55
6.4.3 WWIMClOSEPT OCESSINSIANCESLISE ...ttt ettt sbe e e saee e saee e 56
6.4.4 WM GELPT OCESSINSIANCE. ...ttt a e snre e s 57
6.5 WAPI ACLIVIty SEBEUS FUNCHIONS........oiiiiiiieieiie ettt saee s 58
6.5.1 WM OPENACHVITYINSEANCESLISEeeeiiee ittt 59
6.5.2 WIMFELChACHVITYINSEANCE. ...ttt ettt e saee e 60
6.5.3 WM CIOSRACHIVITYINSLANCESLISE ..ottt 61
6.5.4 WVWIMGELACHVITYINSEANCE. ... ettt ettt ettt see ettt e et e e sbe e e sane e snneeans 62
6.6 WAPL WOTKIISE FUNCHONS......ceiiiieiee ettt e be e eaee s 63
6.6.1 VVIMOPENWWOTKLISE ...ttt sttt sb e sr e sr e nr e e sr e sr e e sreenreenreens 64
6.6.2 WVVIMIFELCAWVOT KITEIML. ...ttt bttt e e e et e e sbe e e sane e saneeans 65
6.6.3 VVIVICTOSEVVONKLISE. ...ttt ettt ettt ettt eb et sbe e et e s be e e be e e sbe e e sate e snbeeans 66
6.6.4 VWIMGEEWOT KITEIM......eeeeetee ettt ettt sb e bbb e sr e sr e e sreenreenre e 67
6.6.5 VWM COMPIELEWOTKITEIML. ...ttt ettt sb e e saae e sare e 68
6.6.6 WM OPENWOT KITEMSIALESLISE ...ttt ettt ettt 68
6.6.7 WWIMFELChWOT KITEMSEALE........oeee ettt ettt et et sbe e e saae e sane e 70
6.6.8 VWIMIClOSEWOT KItEMSEALESLISE ... eveeitee ittt ettt ettt et e b e sbe e e saae e sane e 71
6.6.9 WM ChangEWOT KITEMSLALE.cciueeeiieeitee ettt ettt ettt et e s be e e sbe e e saee e saneeaas 72
6.6.10 WVWIMIREASS GNWVOT KITEIM ...ttt ettt et e e saae e sane e 73
6.6.11 WM OPENWOI KItEMALIFIDULESLISEeeeiiie ettt 74
6.6.12 WM FetChWOr KITEMAINIDULE. ... 75
6.6.13 WM CIloSaWOr KIEMAITIDULESLISE........eeeie e 76
6.6.14 WM GEtWOr KILEMALNIDULEVAIUE ..o 77
6.6.15 WMASS GNWOT KITEMALITIDULE ... 78
6.7 WAPI Administration FUNCHIONS...........oiiieiiiieie et sbe e saee s 79
6.7.1 WM ChangeProCeSSINSLANCESTALEveiiier ettt 79
6.7.2 WMChangeACtiVityl NSEANCESTIALEueiiiee ettt ettt e et sbe e saee e 81
6.7.3 VWM TEr miNatePr OCESSINSLANCES........uveeiteietee ettt e steeebee bt e e seee e sateesbeessbeeesbee e saeeesnneeans 82
6.7.4 WMASS NP 0CeSSINStANCESALLI TDULE........ooviiiieiie et 83
6.7.5 WMASSIgNACLi Vityl NStANCESALIIIDULE ..o 84
6.7.6 VWIMADOI tPr OCESSINSIANCES ...ttt ettt ettt ettt e b e saee e saneeans 85
6.7.7 VWIMADOI P OCESSINSIANCE. ...ttt sbe e 86
6.8 WAPI Application INVOCation FUNCLIONS...........iiiiiiiiiiiie ittt 86
6.8.1 WMTACOoNNECt() & WMTADISCONNECL() -.eeeuvereeeeeiiieeiieeeieeesieeesiteesiteesbe e sie e seee s saaeesnnee s 87
6.8.2 WM TAINVOKEAPPIICALION() vttt ettt ettt ettt ettt e sbe e saae e sare e 88
6.8.3 WM TAREQUESIAPPSIBIUS() .-+ veeveesreesreesteestee st stee st e st st st bt b e sreesreesreesreesreesreenreenreens 89
6.8.4 VWM TATEN MENALEADP() - -+« veeerreeerureerureeateeerteeesteeesuteesbeasbeesabeeesseeasaseesabeseabesasseeesnseesnseasns 90
7. APPENDIX A: FUTURE WORKoooiiiiiee ettt nne e 92
71 AAItIONGl APl ATEBS......eeiiiii ettt ettt sttt e s bt e e abe e e eaee e sabe e sabeeenbeeesaeeas 92
711 WM Data API CAIIS ...ttt nree 92
712 AL NOC ACHIVITIES. ..ottt ettt ettt et sbe e e sa e e s abe e e be e e sbee e saeeesnreaans 92
713 Administration and MaiNtENANCE...........cueiiiiiaiie ettt 92
714 NAMES ANA ROIES.......eieee ettt b e e be e eaee s 92
7.2 AAITIONA ISSUES ...ttt ettt ab et e s be e e b e e e sate e sabeesabeeebeeesaeeas 92
721 Error reporting @nd CONIOL...........eiieiaiiee ettt be e sbee e sane s 92
7.2.2 SYNCNPOINE PrOCESSING ... teeuteeeteeerteeeruteeateeesbeeesaeeesabeesbeeasbeeesbeeesabeasabeeaabeeesseeesnbesanseeenens 92
Version 2.0 Page 4 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

7.2.3 S < ol U 1Y TP T PP P PP 93
724 (e Tox (] o PRV 93
7.25 PrOCESS INTEGIITY ..eieeeetee ettt ettt be e e aee e sabe e sbe e e beeesaeeas 93
8. APPENDIX B: OBJECT BINDINGS.......coiiiiiiiieiienee ettt sttt sre e nreenne e 94
8.1 ADSLract ObjECE DEfINITION.ciiitiieiiee ittt rb et e s e e be e e saee s 94
811 Mapping WAPI to the OLE and IDL BinAiNGScccueiiieniieiieieiee e 95
8.2 OLE AUtOmMation BiNAINGcooiiiiiiiiiiie ettt et sae e sae e sae e e 96
8.21 Expressing WAPI2 as an OLE Automation Interfaceccocovvieiiiii e, 96
822 ATITTOULES ...t b e bbb sr e e sreenreenreen 99
8.2.3 S < Y TP PR PP PSP UPPURRPRRPRN 100
824 1L = T TSP PSP R P PPRPRN 104
8.25 Process DEfiNITION.........coiieiiiiieie e e 104
8.2.6 ProCeSS INSLANCE........coiiiiiiiie e s 108
8.2.7 ACHIVITY DEFINITION ...ttt e b e e sbe e e saee s 110
8.2.8 ACHIVITY INSLANCE......eeeie ettt et e e sbee e saee s 110
8.29 WVOTKITEIML. ..ottt st st ean e s 111
8.2.10 Transition DEfINITION........coeiiiiiee e 112
8.2.11 Participant DEfINITIONoo i 113
8.2.12 APPlICatioN DEfiNITION........ciiiiieii bbb 113
8.2.13 Process Data DEfiNITIONccoieiieiieieee e e 113
8214 AT TOULE. ..t 114
8.3 OMG IDL BiNQING....ccteetieieeiteeiteesie ettt b e bbb r e r e ne e n e e ne e 114
831 The Workflow Facility Base MOAUIE..............ooiiiiiiiiii e 114
8.3.2 Workflow Application Client Server INterface.........c.oooveieriiiiiniieiee e 117
8.3.3 The Process Definition MOGUIEcooviiiiiiiiienee s 120
8.34 Relationship t0 WIMC SEBNAAIAS.eoeieieiiieiiee et 125
9. APPENDIX D: AUDIT DATA oottt ne s 126
9.1 Auditing Process DEfiNItIONS..........ouiiiieiiiii ittt sb e 126
9.2 AUiting ProCESS INSLANCES.......cueieieiieiiee ittt ettt sttt ettt et e s be e e sbe e e saae e sabeesabeeeees 126
9.3 AUditing ACLIVILY INSTANCES.cueiieiie ettt sb e ae et sbe e 127
94 AUAItING WOTKITEMS ...ttt sbe e aee e sabe e sbeeeees 127
10. APPENDIX E: CONFORMANCE PROFILES........cccoi it 128
101 Philosophy and APPIOBCHoo ittt see e st e b e saae e snneea 128
10.2 PractiCe @Nd POIICYoiiieieieie ettt ettt et sbe e st e e be e e be e e sbae e snbeans 128
10.3 The WAPI Conformance Profiles and FUNCLIONSccoiveiiiiieiieneenee e 129
10.31 WMIsWorkListHandler Profil €SUPPOrEd.........ooueieiiieiieeiiee e 129
10.3.2 WM sProcessControl SatusProfil ESUPPOrted.ooiveeiieiiiiierieee e 131
10.3.3 WM I sProcessDefinitionProfil ESUPPOrted..........coo i iiiiieieee e 133
10.34 WM SProcessAdMINPr Ofil @SUPPOITEdcooviiiii e 134
10.35 WM sActivityControl StatusProfileSUPPOrted...........cooveeiiriii e 136
10.3.6 WMISACLivityAdmiNProfil @SUPPOITEaoveieiiieieieeriee e 137
10.3.7 WMIsEntityHandler ProfileSUppOrtedc.eooeioiie e 138
10.3.8 WMIsAuditRecor dProfil ESUPPOITEd.coouiiiiiieiie e 138
10.3.9 WMTOOI AGENntProfil @SUPPOITEd.oeiieiiei et 139
11. APPENDIX F: WORKFLOW DEFINITION FUNCTIONS........cccoiiiiiiiniienieeseesee e 142
111 Entity Handling FUNCLIONScooiiiii ettt 142
1111 [YD = = T Y o= RSP SURROR 142
11.1.2 VWIMICTEAEEENTITY. ... ettt e 143
11.1.3 VWIMOPENENTTTESLISE ...t 143
11.14 WVWIMIFEECRENTITY ...t 145
Version 2.0 Page 5 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.1.5 VWM CIOSEENTITIESLISE ...ttt e 146
11.1.6 VWIMIDE GEEENTITY ...t 147
11.2 Entity Attribute ManipUlationcooiiioiiieiee ittt snne e 148
1121 WM OPENENLH YA TDULESLISE ... e 149
11.2.2 WM FEtChENL LY AL TOULE. ... e 150
11.2.3 VWM CIOSEEN LY AT TDULESLISE ... e 151
11.24 WM GELENLIty AL IDULEVAIUE. ... e 152
11.25 WMOPenENtity AttriDULEVAIUELISEc.eeiiiiiiiee e 153
11.2.6 WMFetchENtity AttriDULEVAIUE. ... 154
11.2.7 WMCIoseEntity AttribDULEVAIUELISE......ccoeiiiieeeeie et 155
11.2.8 WMASSI GNENLityAtriDULEVAIUE ..o 156
11.2.9 WM Clear ENtityAtrIDULELISE. ...t 157
11.2.10 WMAAJEN tyAFTDULEVAIUE ... 158
11.3 Process Modelling FUNCLIONS.oouiii ettt saee e 159
11.31 WM OPenWOrKFIOWDEFI NITION. ..o 160
11.3.2 VWM CIoSEWOT KIOWDEfINITION ...t 161
11.3.3 WM CreateProcessSDEfiNITIONooeiiiiiieie e 162
11.34 WMDe! eteProCcessDEfiNITION.oiviiiiiiiie st 163
11.35 WM OPENPTOCESSDEFINITIONcoiiiieiiee et 164
11.36 VWM CI0SEPTOCESSDEfI NITION ...t 165
114 Standard Process Modelling ENtity TYPESevoieieiieeiee ettt 165
1141 Additional DAta TYPES.veeiieeeitieeitieeriee et et e et sbe et et e e e sbe e saee e sabeesbeeabeeesbeeesneeas 165
11.4.2 Process MOOel ENLItY TYPE.....c.ueeiieeiiee et siie st ettt e b e sae e saee e sabe e snseeeees 166
11.4.3 Activity Definition ENity TYPEeii et 167
115 Transition Definition ENLIY TYPE ...coiieiiiiieiiee ettt 169
11.5.2 Process Data ENtity TYPEottt 170
12, APPENDIX G: STATES. ...ttt st b e sae e nne e sneesaeennnas 174
121 Process INSLANCE SEALES..........cuiiiiiiiiiiii e 174
12.2 ACHVILY INSEANCE SEALES.coitiiiiei ettt ettt e b e e aee e sabe e sabeeeees 175
12.3 WWOPKITEIM SEALES......eeveeteeiteest ettt b b b e bbb e b nbeenne e 176
Version 2.0 Page 6 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

0. Change History

Version 1.0
Intitial version
Version 1.1
Consistent handling of output parameters as pointers
Added attributes for WM TProcessDefinition
Editorial enhancements
Version 1.2
Added Abstract Object Model
Added OLE Binding
Added OMG IDL Binding
Version 2.0 (Beta)
Added Process Definition functions
Added States
Added references to Audit Data
Added Conformance Specification
Version 2.0 (Beta)
Added Application Interface Definition
Added Application Interface functions

Version 2.0
Copyright © 1993, 1996, The Workflow Management Coalition

01-October-96

Page 7 of 178

Workflow Management Application Programming Interface (Interface 2) 01-October-96

1. Purpose

The purpose of this document is to specify standard workflow management Application Programming
Interfaces (API) which can be supported by WFM products. These API calls provide for a consistent
method of access to WFM functions in cross-product WFM Engines. The APl set is named Workflow
Application Programming Interfaces (WAPI).

This document defines the API specifications of the Workflow Management Coalition for building
workflow-enabled applications (Interface 1,2 and 3 in the Workflow Reference Model).

This document is directly associated to the documents:

Workflow Management Coalition Glossary
Workflow Management Coalition Interface 2 WAPI Naming Conventions

The three documents constitute the compl ete specification.

2. Audience

The intended audience of this document includes all participants in the workflow industry. Comments
should be addressed to the Workflow Management Coalition.

3. Overview

The support of these interfacesin WFM products allow the implementation of front-end applications
which need to access WFM Engine functions (Workflow services). Such implementations might be
written by WFM exploiters or ISVs. Implementation of these API calls are also intended to alow the
workflow applications to be adjusted to operate with different WFM Engines using this common API
interface.

These API calls should allow a WFM exploiter to have a single end user interface and functions set
regardless of the number of WFM products existing in an installation. WAPI calls may be implemented in
anumber of languages. The first Coalition specification will be for the‘C’ language. The API operates
as CALLS. No assumption is may regarding the underlying implementation of the CALLS in a particular
WFM product implementation. The WARPI calls are for use at run-time. That is, when processes are
executing or are to be executed. They would normally be used by workflow applications (e.g. worklist
handlers, cooperating applications) but may also be used by a WFM Engine when it wishes to interact
with another WFM product within the context of the API functions.

Through its set of functions, the WAPI provides a set of workflow services that a Workflow Enactment
Service provides. The WAPI does not assume any specific user interface, but rather it specifically
assumes that the user interface of the workflow enabled application, that uses these services, providesits
own user interface, that depends solely on the application development environment facilities whereit is
implemented.

Version 2.0 Page 8 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

The WFM Engine functions can broadly be classified in the following areas:

WAPI Connection Functions

WAPI Workflow Definition Functions
WAPI Process Control Functions
WAPI Activity Control Functions
WAPI Process Status Functions
WAPI Activity Status Functions
WAPI Worklist Functions

WAPI Administration Functions

3.1 Application Interface Definition

Introducing a Workflow Management System always implies that at least the existing IT environment has
to be integrated, or better “workflow enabled”. Additionally, this interface grants a certain degree of
protection on the already installed software systems.

The WfMC' s interface to invoke applications does not define a direct application control mechanism.
Today, the customers and the vendors are confronted with severa different operating systems and
application communication mechanisms. Therefore, Workflow Management Systems need an interface to
specific application drivers. With the definition of these drivers to invoke and control applications, the
Coalition offers an interface which enables a standardized protocol between workflow products and any
other software systems.

Currently, avariety of Workflow Management Tools support specialized mechanisms to integrate
applications and to exchange information. While all these mechanisms are mostly individually
implemented for specific customer requirements, system integration companies and third party vendors
have to re-implement these mechanisms, if they intend to use another Workflow Management tool at the
same site. Consequently, their interest in supporting the generation of such an interface is, indeed, very
high, as it would definitely improve their daily work. It might appear very simple to “workflow enable”
common applications, nevertheless, workflow environments typically include a series of different
specialized applications, which run in heterogeneous environments.

Workflow Management Systems as well as integration platforms are required by the market and require a
generalized and standardized application interface.

3.1.1 Purpose & Background

The “Invoking Applications Interface” defines an interface mechanism between Workflow Management
Systems and any other application, but it, however, differentiates itself from the other Coalition interface
definitions. Invoking an application is not a workflow specific functionality, but a Workflow System
would not make much sense without this functionality.

Therefore, this interface addresses workflow system vendors as well as any third party software vendor.
Based on different communication technol ogies the so-called “ Tool Agents” can handle the application
control and information exchange. These Tool Agents represent at least one specific invocation
technology. E.g. while one Tool Agent supports DDE commands, others can communicate based on
protocols like OLE or CORBA or any other concept.

The technology to interact between a Tool Agent and a corresponding application depends on the
underlying architecture and on application - specific interfaces, which have to be managed under control
of the Tool Agent itself. The suggested interface defines the way a Tool Agent can be used by a workflow
application, e.g. aworklist handler or the workflow engine. Finaly, the purpose of Tool Agents can be
compared with the purpose of standardized software components.

Version 2.0 Page 9 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

3.2 Design Philosophy

There are a number of design assumptions and constraints that provide a framework or philosophy for the
definition of this specification.

3.3 Design Assumptions

Incremental Set of Functions. It isassumed that as the WFM technology evolves, likewise the
specifications defined in this document will evolve and will have additions in subsequent versions
of this document.

Strings are defined with buffer sizes allocated in bytes. Strings are assumed to be zero terminated.
The workflow engine may have security restrictions that may cause an error to be returned to a user
for some of the API cals.

The specific calls to change state have to be supported by all vendors. The generic state changes are
reserved for vendor specific states. In the future, it is expected that a common set of states will
evolve.

Each process definition must have a unique 1D within an administrative scope.

Each process instance must have a unique 1D within an administrative scope.

Each activity instance must have a unique 1D within a process instance.

Each work item must have a unique ID within a process instance.

Process Instance ID is unique to the workflow engines from which it is available. It isthe
responsihility of the workflow engine to ensure a unique identifier within this scope.

3.4 Design Objectives

Ease of Implementation. The API specification must be easy to implement by awide range of
vendors. Thisalso implies that the specification will be able to be implemented by
multiple vendors in a reasonably short period of time.

3.5 Defined Terms and Abbreviations
The terms used in this document are defined in the WFM Coalition Glossary.

3.6 Reference Documents

The following documents are associated with this document and should be used as a reference.
WFM Codlition Reference Model
WFM Coadlition Glossary
WFM Coalition WAPI Naming Conventions

Version 2.0 Page 10 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

3.7 Conformance

A vendor can not claim conformance to this or any other WfMC specification unless specifically
authorized to make that claim by the WIMC. The WfMC grants this permission only upon the
verification of the particular vendor’ s implementation of the published specification, according to the
conformance requirements and applicable test procedures defined by the WfMC.

3.8 WAPI Naming Conventions

The Working group has proposed a set of standards for handling the naming conventions of the different
implementation of the Workflow API. These naming conventions standards are described in the
document Workflow Management Coalition Interface 2 WAPI Naming Conventions (Document Number
WFMC-TC-1013).

Version 2.0 Page 11 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

4. WAPI Data Types

This section describes the WAPI datatypes. These data types are used in the WAPI calls asinput and
output parameters.

4.1 Basic WAPI Data Types

This subsection contains definitions of the basic Workflow Management types that are operating system or
platform dependent.

typedef char WMTI nt 8;
typedef short WMTI nt 16;
typedef |ong WMTI nt 32;
typedef unsigned char WMTUI nt 8;
typedef unsigned short WMTUI nt 16;
typedef unsigned |ong WMTUI nt 32;
typedef WMIInt8 WMT Text ;
typedef WMIText *WMTIPText ;
typedef WMIInt8 *WWMTPI nt 8;
typedef WMl nt 16 *WWMTPI nt 16;
typedef WM nt 32 *WMTPI nt 32;
typedef WMIInt8 WMTIBool ean;
typedef WMIUI nt 8 *WWMTPoi nt er;
typedef WMIText *WMTPPri vat e;
#defi ne WWNULL ((WMTPoi nt er) 0)
#def i ne WWFal se 0

#defi ne WMITue (! WWFal se)

4.2 Other WAPI Data Types

This subsection contains definitions of the Workflow Management types that are specific to the structures
and objects defined in this specification.

Strings in this specification, are assumed to be zero terminated. The maximum string length for names,
keywords and identifiersin this specification is 63 characters hosted in a 64 byte text array. The
following macro definition specifies thistypical size:

#def i ne NAME_STRI NG_SI ZE 64

All strings in this specification are defined as text arrays, such as:

WMT Text user _identificati on[NAVE_STRI NG_SI ZE] ;
Given this, in the example above the string can include up to a maximum of 63 real characters.

In some other cases, the fixed size structures for data reference and unique ids are also defined through
the following macro definitions:

#define UNI QUE_I D_SI ZE 64

Version 2.0 Page 12 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

All WAPI function calls have a uniform error return datatype:

typedef struct

WMTI nt 16 mai n_code;
WMTI nt 16 sub_code;
} WMTErr Ret Type;

This datatype is shared among all API calls. All other data types are shown along with the WAPI
description for each individual call.

This error return datatype is a Int32 word that has two Int16 elements for error returns. The main_code
element contains the main error return code, while the sub_code element contains a code that further
specifies the nature of the error. For example, the main_code error code Wi | NVALI D_PROCESS_| NSTANCE
(see Error Return Codes below), would include in its sub_code set of codes a further, more detailed reason
why the process instance is invalid.

This specification assumes that the Coalition will specify a subset of the main_code codes, leaving for
vendor specific implementation the remaining main_code codes and the set of sub_code codes to provide
extensibility and specialization of error codes.

typedef struct

WMTText user_identificati on[NAME_STRI NG_SI ZE] ;
/1 The identification of the workflow

partici pant on whose behal f the Workfl ow
Application will be operating. The
val ue specified may represent a human, a
device, etc. This identificationis
normal |y used for security checking,
accounting, etc.

WMTText passwor d[NAME_STRI NG_SI ZE] ;
WMTText engi ne_nanme[NAVE_STRI NG_SI ZE] ;

/1 The identification of the WFM Engi ne to
whom t he subsequent APl calls are to be
directed. This information would not be
required for some WFM products in the
normal case. However, it is required for
those Workfl ow Applications which
interact with nmultiple WM Engines. This
woul d be a synbolic name which is
resol ved through a | ookup facility.

WMTText scope[NAVE_STRI NG_SI ZE] ;
/1 ldentification of scope for the

application. |If scope is not relevant,
then this field would be enpty and
i gnor ed.
} WMIConnect | nf o;
typedef WMIConnectl|nfo *WWMIPConnect | nf o;
typedef struct
WMTUI nt 32 sessi on_i d; /1 locally unique ID for the session
WMTPPr i vat e pprivate; /1 pointer to a private structure containing

vendor specific information.
} WMTSessi onHandl e;

typedef WMISessi onHandl e *\WMIPSessi onHandl e;

Version 2.0 Page 13 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

typedef struct

WMTI nt 32 filter_type; /1 Includes basic types and SQL String
WMTI nt 32 filter_length; /1 Length (in bytes) of val ue
WMT Text attribute_name [NAME_STRI NG_SI ZE]
WMTUI nt 32 conpari son; /] one of: <, > = I= <= <=
WMTPText filter_string;
}WMIFi [ter;

typedef WMIFilter *WMIPFilter;

/1 The first 255 filter types will be reserved. These will be used for filtering on
attributes of process control data and process rel evant data. The specific code val ues
for these codes are included in the WFM Coal ition Interface 2 WAPI Nami ng Conventi ons
speci fication docunent.

/Il In this specification there are two types of filters. One type is useful for
conparisons with and between attribute values. In this case, the filter_string
includes the attribute value that the attribute is conpared against. The second type
is a nore general nechanismin which the filter_string represents the whol e argunent
(typically a full SQ argument). If filter_type is a SQ string, the filter_string
will point to a SQL clause with the syntax of a WHERE cl ause in the SQL 92 standard
| anguage specification.

typedef struct

WMTUI nt 32 query_handl e;
} WMIQuer yHandl e;

typedef WMIQuer yHandl e *WMIPQuer yHandl e;

typedef struct

WMT Text wf_partici pant [NAME_STRI NG_SI ZE] ;
}WMIW | Parti ci pant;

typedef WMIW I Partici pant *WMIPW | Parti ci pant;

typedef struct

WMT Text proc_def _i d[UNI QUE_I D_SI ZE] ;
} WMTPr ocDef | D

typedef WMIProcDef | D *\WMI'PPr ocDef | D

typedef struct

WMIText acti vity_i d[NAVE_STRI NG_SI ZE] ;
}WMTActi vi tyl D

typedef WMIActivityl D *WMIPActivitylD;

typedef struct

WMTText proc_def _st at e[NAME_STRI NG_SI ZE] ;
} WMIProcDef St at e;

typedef WMIProcDef St ate *WWIPProcDef St at e; /] pointer to a 63-byte string

typedef struct

/1 This is the mninumlist of elements at this tinme. Future versions to provide
extensibility for this structure.

WMT Text process_nane[NAME_STRI NG_SI ZE] ;
WMTPr ocDef | D proc_def _id;
WMTPr ocDef St at e state;

} WMTPr ocDef ;

typedef WMIProcDef *WMIPProcDef ;

Version 2.0 Page 14 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

typedef struct

WMTText proc_inst_i d[UNI QUE_I D_SI ZE] ;
}WMIPr ocl nst | D

typedef WMIProcl nstl D *WMIPPr ocl nst | D;

typedef struct

WMIText proc_i nst_stat e[NAVE_STRI NG_SI ZF] ;
} WMIProcl nst St at e;

typedef WMIProclnstState *WMIPProclnstState; // pointer to a 63-byte string

typedef struct

/1 This is the mninumlist of elements at this tinme. Future versions to provide
extensibility for this structure.

WMT Text process_nane[NAME_STRI NG_SI ZE] ;
WMTPr ocl nst | D proc_inst_id;

WMTPr ocDef | D proc_def _id;

WMTPr ocl nst St at e state;

WMTI nt 32 priority;

WMTW | Parti ci pant proc_partici pants[20];

//up to 20 63 character long participant identifiers
} WMIProcl nst;

typedef WMIProcl nst *WMIPProcl nst ;

typedef struct

WMIText activity_inst_id[UNIQUE_| D_SI ZE] ;
}WMTActi vi tyl nst1D;

typedef WMIActivitylnstlD *WMIPActi vitylnstlD;

typedef struct

WMTText activity_inst_state[NAME_STRI NG_SI ZE] ;
} WMTActivityl nst State;

typedef WMIActivitylnstState *WMIPActivitylnstState;

typedef struct

/1 This is the mininumlist of elenents at this time. Future versions to provide
extensibility for this structure.

WMT Text activity_name[NAME_STRI NG_SI ZE] ;
WMTActivitylnstlD activity_inst_id;

WMTPr ocl nst | D proc_inst_id;
WMTActivitylnstState state;

WMTI nt 32 priority;

WMTW | Parti ci pant activity_participants[10];

//up to 10 63 character long participant identifiers
} WMIActivitylnst;

typedef WMIActivitylnst *WMIPActivitylnst;

Version 2.0 Page 15 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

typedef struct

WWTText wor k_i t em i d[UNI QUE_I D_SI ZE] ;
}WMTVr ki t eml D;

typedef WMIWorkltem D *WMIPWor kil t eml D;
typedef struct

/1 This is the mininumlist of elenents at this time. Future versions to provide
extensibility for this structure.

WMT Text wor ki t em_name[NAVE_STRI NG_SI ZE] ;
WMTWor ki t em D wor ki tem.id;

WMTActivitylnstlD activity_inst_id;

WMTPr ocl nst | D proc_inst_id;

WMTI nt 32 priority;

WMTW | Parti ci pant partici pant;

} WMTWor ki tem
typedef WMIWor kltem * WMTPWor ki t em

typedef struct

WMT Text attri but e_nanme[NAVE_STRI NG_SI ZE] ;

WMTI nt 32 attribute_type; /1 type of the attribute

WMTI nt 32 attribute_l ength; /1 length of the attribute value
WMTPText pattribute_val ue; /] pointer to the attribute val ue

} WMTAttri bute;
typedef WMTAttribute *WMIPAttri bute;
typedef struct
WMTI nt 32 attri bute_nunber;
WMTPAt tri bute pattribute;
WMTINext At tr *WMTAt t ri but eLi st
} WMTAttri butelist;

typedef WMTAttri buteList *WWTPAttri butelLi st;

4.3 Attributes

This specification does not make any assumption about the binding that workflow applications will make
of retrieved attributes and their values. It is up to the specific application to manage this binding. The
APl manages attributes as a set of four elements:

WMT Text attri but e_name[NAVE_STRI NG_SI ZE] ;

WMTI nt 32 attribute_type; /1 type of the attribute

WMTI nt 32 attribute_l ength; /1 length of the attribute value
WMTPText pattribute_val ue; /] pointer to the attribute val ue

All API callsin this specification that deal with attributes, take each individual element as separate
parameter for the call.

The following type definitions are used for attribute name:

typedef WMTText WMTAttr Nane[NAMVE_STRI NG_SI ZE] ;
typedef WMIAttr Name *WMIPAttr Name;

These attributes are of the kind called Process Control and Process Relevant Data. Some attributes of
process instances, activity instances and work items could be: priority, state, start_time, description,
instance_name, workflow_participant.

Version 2.0 Page 16 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

5. WAPI Error Return Codes

This section describes the minimal set of WAPI error return codes. These error codes correspond to the
main_code element of the WMTErrRetType datatype defined above. The specific code values for these
codes are included in the WFM Coalition WAPI Naming Conventions specification document.

The minimal set of main_code error return codes are:

WM_SUCCESS
Indicates that the API call completed successfully.

WM _CONNECT_FAI LED
Indicates that the WM Connect call failed.

W | NVALI D_PROCESS_DEFI NI TI ON
Indicates that the process definition ID that was passed as parameter to an API call was
not valid, or it was not recognized by the servicing workflow engine.

W _I NVALI D_ACTI VI TY_NAME
Indicates that the activity name that was passed as parameter to an API call was not
valid, or was not recognized by the servicing workflow engine.

W _| NVALI D_PROCESS_| NSTANCE
Indicates that the process instance ID that was passed as parameter to an API call was
not valid, or was not recognized by the servicing workflow engine.

WK _| NVALI D_ACTI VI TY_I NSTANCE
Indicates that the process instance ID that was passed as parameter to an API call was
not valid, or was not recognized by the servicing workflow engine.

WW_| NVALI D_WORKI TEM
Indicates that the work item ID that was passed as parameter to an APl call was not
valid, or was not recognized by the servicing workflow engine.

W | NVALI D_ATTRI BUTE
Indicates that the attribute that was passed as parameter to an API call was not valid, or
was not recognized by the servicing workflow engine.

WM ATTRI BUTE_ASSI GNVENT_FAI LED
Indicates that the workflow engine was not able to complete the attribute assignment
requested.

W | NVALI D_STATE
Indicates that a state was not valid, or was not recognized by the servicing workflow
engine.

W TRANSI TI ON_NOT_ALLOWED
Indicates that the state transition requested was not valid, or was not recognized by the
servicing workflow engine.

W _| NVALI D_SESSI ON_HANDLE
Indicates that the session 1D that was passed as parameter to an APl call was not valid,
or was not recognized by the servicing workflow engine.

W _| NVALI D_QUERY_HANDLE
Indicates that the query handle ID that was passed as parameter to an API call was not
valid, or was not recognized by the servicing workflow engine.

WM | NVALI D_SOURCE_USER

Version 2.0 Page 17 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Indicates that the participant “source user” that was passed as parameter to an API call
was not valid, or was not recognized by the servicing workflow engine.

W | NVALI D_TARGET_USER
Indicates that the participant “target user” that was passed as parameter to an API call
was not valid, or was not recognized by the servicing workflow engine.

WV | NVALI D_FI LTER
Indicates that the filter structure or values that were passed as parameter to an API call
was not valid, or was not recognized by the servicing workflow engine.

WWM_LOCKED
Reserved for situations in which the servicing workflow engine implements “locking” of
workflow entities (process definitions, process instances, activities, work items, etc.) to
indicate that the entity is locked at the moment in which its access is requested.

WW_NOT_LOCKED
Reserved for situations in which the servicing workflow engine implements “locking” of
workflow entities (process definitions, process instances, activities, work items, etc.) to
indicate that the entity is not locked at the moment in which its access is requested.

W _NO_MORE_DATA
Indicates that afetch query call has reached the end of the list of valid entities to be
returned. This error return codeis used to implement queries of lists of workflow
entities, it indicates that all the entities of the list that matched the selection criterion
have already been returned.

W | NSUFFI Cl ENT_BUFFER S| ZE
Indicates that the buffer size that was passed to an API call isinsufficient to hold the
datathat it is supposed to receive.

WM_APPLI CATI ON_BUSY
I ndi cates that the corresponding application is currently busy and cannot
return a status of work progress.

WM_| NVALI D_APPLI CATI ON
Indicates that an invalid application has been requested by the calling
interface.

WM_| NVALI D_WORK_| TEM
Indicates that an invalid work item has been referenced to by the calling
interface.

WM_APPLI CATI ON_NOT_STARTED
Indicates that the requested application did not start up successfully.

WWM_APPLI| CATI ON_NOT_DEFI NED
Indicates that the application is not installed or configured.

WM_APPLI CATI ON_NOT STOPPED
I ndi cates that the corresponding application did not stop orderly.

Version 2.0 Page 18 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6. WAPI Descriptions
This section describes the WAPI calls. They are grouped as follows:

WAPI Connection Functions

WAPI Process Control Functions
WAPI Activity Control Functions
WAPI Process Status Functions

WAPI Activity Status Functions

WAPI Worklist Functions

WAPI Administration Functions

WAPI Application Invocation Functions

The specification of the WAPI calls that follows includes a specification of parameters with
indications of the direction of data passing:

in for parameters with data being passed to the API from the calling application
out for parameters with data being passed from the API to the calling application.

It should be noted, that in the “C” language interface, parameters that are specified as out require
a pointer to be passed from the calling application to the API. The API in turn will return the
appropriate data in the space pointed to by the pointer. The specification of these in and out
parametersis provided to clarify the specific purpose of these parameters in the calls.

6.1 WAPI Connection Functions

Connected/Connectedless Over view

The Coalition WM Connect /WM Disconnect APl commands are intended to bound a set of related work
by the application using them. When issued, the WM Connect returns a handle whose value is used on all
other Coalition API calls. The handle valueis unique and relates API calls which are issued between a
WM Connect /WM Disconnect pair instance. The WM Connect command allows information to be
supplied once and to remain valid until a WM Disconnect occurs.

Information supplied during the WM Connect (see the Connectlnfo structure in the WM Connect call)
includes identification information relating to who/what is requesting services from the WFM Engine for
use by an authentication service. The structure of the session handle that is returned by the WM Connect
call isapointer to a structure that contains a session ID and another structure pointer containing vendor
specific information. (See the Session Handle structure in the WM Connect call.)

For those workflow servers that establish a connection, the session ID and the pointer to the vendor
specific information would be returned by the workflow engine. For those workflow servers that do not
establish a connection, the session ID would be set to 0, and a pointer to the connection information that
was passed in by the user will be stored in the private structure contained in the session handle structure.

Operation between the API and the Engine

The construction of the Coalition API calls are intended to have little impact on the operational structure
of how aWFM product supports them. The API calls are considered to be protocol neutral in that once
the API boundary is crossed, different types of mechanisms may be employed to deliver the request to the

Version 2.0 Page 19 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

WFM engine. A particular WFM product's method of interacting between the API calls and the WFM
Engine functions may be RPC, conversational, messaging (connectedless) or others.

If amessaging mechanism is used by a WFM product, the receipt of a WM Connect may result in the
determination of what messaging queue is to be used for interaction between its APl support and the
WFM engine functions, plus establishing control information to link that queue to subsequent API calls
which use a particular handle. If the WFM engine is remote, it may also send a setup type of message to
the engine.

If a conversational mechanism is used by a WFM product, and the WFM engine is remote, the receipt of a
WM Connect may result in the establishment of a communications session between the code supporting
the API calls and the WFM engine.

If adata base is being used, one of the results of the WM Connect may be the establishment of a
connection to the appropriate data store facility.

A particular WFM product may choose to accept the WM Connect command, return a handle, and ignore
the fact that it occurred.

The above are examples of possible operations performed by different WFM products in support of a
WM Connect command. Obviously, more are possible.

In some cases, a product will be required to connect a single workstation to multiple WFM engines. It is
possible that multiple WM Connect commands are active concurrently and the subsequent APl commands
be directed to the correct WFM engine. The WM Connect command may be used to designate a
particular engine. The handle returned from the WM Connect command may be used on subsequent API
callsto link those which relate to a engine.

The results of a WM Disconnect command is may vary, again depending upon a particular WFM product
implementation. Its purpose is to indicate that the application issuing the preceding API callswill no
longer be accessing the WFM engine functions within the previous context. In some products, upon
receipt of a WM Disconnect command, communications and other resource types may be released.

Application Operation when using the API calls

The operational structure of an application asit relates to the use of the Coalition API callsis affected by
the way the API calls are constructed. The current construction of the Coalition API calls result in the
code segment of the application making the API call to run in blocked mode. That is, the application will
issue an APl command and 'wait’ for a response from what it perceives as the WFM engine. When
making the API call, the application code segment gives up control to the APl and does not regain control
until the APl command is satisfied.

Much of the time, the APl commands will be issued due to a workflow participant's direction via
the application's End User Interface (EUI). Most of the current APl commands are not such that
aworkflow participant would be interested in making the request, doing something else, and
then sometime later (via a process/queue/whatever) viewing the real response to the request.
With the request types supported by the API set, it would normally be the case that a workflow
participant would want to see the response to the request as soon as possible.

The API calls could be constructed in such away to alow the application code segment making the AP
call to runin unblocked mode. That is, to make the API call 'immediate return’ rather than waiting for
the actual response to the requested action. If this were done, the Coalition would need to define
additional functions to support connectedless mode of operation (in some manner, get the asynchronous
response when it did arrive and get it to the workflow participant).

Version 2.0 Page 20 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

The WM Connect / WM Disconnect API commands themselves have nothing to do with the ability of an
application to run connected or connectedless as they are now defined.

Synchronous vs Asynchronous Calls

Most API calsinthe WAPI call set are synchronous calls. In particular al the query related API calls are
synchronous. Other calls may have some asynchronous behavior in that the call itself will return
synchronoudly to the caller program, but the work specified by the call may be executed by the Workflow
Engine at alater time, letting the application proceed. This set of API callswill not include any Call-
Back mechanism to synchronize asynchronous calls.

Version 2.0 Page 21 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.1.1 WM Connect

NAME
WM Connect - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WM Connect command informs the WFM Engine that other commands will be originating
from this source.

WWMTEr r Ret Type VWMConnect (
in WMIPConnect | nfo pconnect_info
out WMIPSessi onHandl e psessi on_handl e)

Argument Description
peonnect _info Pointer to structure containing the information required to create a connection.
psession_handl e Pointer to a structure containing information which can be passed to the WFM

Engine on all subsequent API calls which would identify interactions within the
WM Connect / WM Disconnect bounds, that define a participant’s session
interaction with the Engine. These handles are opague so that in connectedless
environments the handles include participants identities and passwords rather
than session identification. There will be a special value for ahandle to
indicate failure of the function.

ERROR RETURN VALUE

WM_SUCCESS
WM_CONNECT_FAI LED

WM DisconnectNAME
WM Disconnect - Disconnect from the WFM Engine for this series of interactions
DESCRIPTION

The WM Disconnect command tells the WFM Engine that no more API calls will be issued from this
source using the named handle. The WFM Engine could discard state data being held or take other
closure actions.

WWTEr r Ret Type VWDI sconnect (
in WMTPSessi onHandl e psessi on_handl e)

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE

Version 2.0 Page 22 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2 WAPI Process Control Functions

Process Control Functions can be defined as those which change the operational state of one or more
process instances. These API calls are intended for use by the WFM end user application. However, some
of the API calls, or parameters within some of the API calls, may affect multiple users and would

normally be restricted to the use of a process administrator.

6.2.1 WM OpenProcessDefinitionsL ist

NAME

WM OpenProcessDefinitionsList - Specifies and opens the query to produce alist of all process
definitions that meet the selection criterion of the filter.

DESCRIPTION

This command may also be used by a manager or process administrator to get alist of process definitions
so they may view which processes are startable by particular persons. This command directs the WFM
Engine to open the query to provide alist of process definitions which are available to a particular
workflow participant, some of which may be startable by the participant. It is assumed that not all
processes in an organization may be started by all workflow participants. One of the uses of this APl isto
allow aworkflow participant to view which processes he/she can start with the expectation that the next
action by the workflow participant would be to pick one to be started.

This command will return a query handle for alist of process definitions that match the specified value for
the attribute. The command will also return, optionally, the total count of definitions available. If the
count is reguested and the implementation does not support it, the command will return apcount value of
-1. If pproc_def_filter isNULL, then the function, with the corresponding fetch calls will return the
list of ALL process definitions.

(Note: This API does not change the state of process or activity instances per the definition above of
Process Control Functions. It isincluded in this section because it might normally lead to the execution of
other API calls which would cause operational state changes.)

WMTEr r Ret Type VWIOpenPr ocessDef i ni ti onsLi st (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPFi | ter pproc_def _filter,

n WMIBool ean count _fl ag,

ut WMTPQuer yHandl e pquery_handl e,

ut WMTPI nt 32 pcount)

oo~ =

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pproc_def _filter Filter associated with the process definition.
count _fl ag Boolean flag that indicates if the total count of definitions should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of process definitions that fulfill the filter condition.
ERROR RETURN VALUE
WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_FI LTER

Version 2.0 Page 23 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

REQUIREMENTS
No requirements are assumed to exist with regard to the type of process model.

No requirements are assumed to exist with regard to how workflow participant’s are identified within the
WFM Engine.

RATIONALE FOR API

This command and the corresponding fetch calls allows a workflow participant to retrieve the
process definition ids which aworkflow participant is authorized to start. They might be used in
conjunction with the WM CreateProcessl nstance and WM StartProcess API callsto start a
particular named process.

Version 2.0 Page 24 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.2 WM FetchProcessDefinition

NAME

WM FetchProcessDefinition - Returns the next process definition from the set of process definitions that
met the selection criterion stated in the WM OpenProcessDefinitionsList call.

DESCRIPTION

This command directs the WFM Engine to provide one process definition from the list of process
definitions which are available to a particular workflow participant, some of which may be startable by the
participant. It is assumed that not all processes in an organization may be started by all workflow
participants. One of the uses of this API isto allow aworkflow participant to view which processes he/she
can start with the expectation that the next action by the workflow participant would be to pick one to be
started. Thisfetch function, aswell as all other fetch functionsin this API, will return subsequent items
after every call, one at atime. The fetch process is complete when the function returns the error

WM NO_MORE_DATA. The sort order in which the items are returned is specific of the workflow engine
servicing the call, no specific order should be assumed.

WWTEr r Ret Type WWWFet chProcessDefinition (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPQuer yHandl e pquery_handl e,

out WMIPProcDef pproc_def_buf_ptr)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the
WM OpenProcessDefinitionsList query command.
pproc_def_buf_ptr pojnter to a buffer area provided by the client application where the process

definition structure will be placed.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON
WM | NVALI D_QUERY_HANDLE

WM _NO_MORE_DATA

Version 2.0 Page 25 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.3 WM CloseProcessDefinitionsList

NAME
WM CloseProcessDefinitionsList - Closes the query of process definitions.
DESCRIPTION

WWTEr r Ret Type VWMCI osePr ocessDefi nitionsLi st (

in WMIPSessi onHandl e psessi on_handl e,
in WMIPQuer yHandl e pquery_handl e)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the

WM OpenProcessDefinitionsList query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0 Page 26 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.4 WM OpenProcessDefinitionStatesL ist

NAME

WM OpenProcessDefinitionStatesList - Specifies and opens the query to produce the list of states of the
process definition that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of states for a process definition. The command will
also return, optionally, the total count of definitions available. If the count is requested and the
implementation does not support it, the command will return apcount value of -1.

One of the uses of this API, together with the corresponding fetch and close cals isto allow aworkflow
application to query the Workflow Engine for the available states of the process definition that match the
filter criterion, in order to offer thislist to the application user. For example, process definitions can bein
states such as disabled (thus disallowing temporarily the creation of new process definitions), or enabled
(thus allowing again the creation of new process definitions based on the named definition). If

pproc_def _state_filter iISNULL, then the function, with the corresponding fetch calls will return the
list of ALL states available for the definition.

WMTEr r Ret Type VWIOpenPr ocessDef i niti onSt at esLi st (
WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pproc_def _id,

WMTPFi | ter pproc_def _state_filter,
WMIBool ean count _fl ag,

ut WMIPQuer yHandl e pquery_handl e,

ut WMTUI nt 32 pcount)

3‘3‘3‘3

o
—-

o

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ action.
pproc_def _id _ Pointer to a structure containing the unique process definition ID.
pproc_def_state_filter Fjlter associated with the process definition state.
count _fl ag Boolean flag that indicates if the total count of process definition states
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of states for this process definition.
ERROR RETURN VALUE
WM_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON

Version 2.0 Page 27 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.5 WM FetchProcessDefinitionState

NAME

WM FetchProcessDefinitionState - Returns the next process definition state, from the list of states of the
process definition that match the filter criterion.

DESCRIPTION

This command returns a process definition state. This fetch function will return subsequent process
definition states after every call. The fetch process is complete when the function returns the error
W NO_MORE_DATA.

WWTEr r Ret Type WWWFet chProcessDefinitionState (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPQuer yHandl e pquery_handl e,

out WMIPProcDef St at e pproc_def _state)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.

pquery_handl e Identification of the specific query handle returned by the
WM OpenProcessDefinitionStatesL ist query command.

pproc_def _state Pointer to a buffer area provided by the client application where the state name
will be placed.

ERROR RETURN VALUE

WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

Version 2.0 Page 28 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.6 WM CloseProcessDefinitionStatesL ist

NAME
WM CloseProcessDefinitionStatesList - Closes the query for process definition states.
DESCRIPTION

WWTEr r Ret Type VWMCI osePr ocessDefinitionStatesLi st (

in WMIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the

WM OpenProcessDefinitionStatesL ist query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0 Page 29 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.7 WM ChangePr ocessDefinitionState

NAME
WM ChangePr ocessDefinitionState - Changes the state of the named process definition.
DESCRIPTION

This command is defined to allow a process definition to be changed temporarily to a specific state such as
disabled (thus disallowing temporarily the creation of new process definitions), or enabled (thus allowing
again the creation of new process definitions based on the named definition).

WMTEr r Ret Type WWMChangePr ocessDef i niti onSt at e (
in WMIPSessi onHandl e psessi on_handl e,
n WMTPPr ocDef | D pproc_def _id,

in WMTPPr ocDef St at e pproc_def _state)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
_ action.

pproc_def _id Pointer to a structure containing a unique process definition 1D.

pproc_def_state Pointer to a structure that contains the name of the state to change the

process definition to.

ERROR RETURN VALUE

WM _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON
WM | NVALI D_STATE

VWM _TRANSI TI ON_NOT_ALLOWED

REQUIREMENTS
Each process definition must have a unique ID within an administrative scope.
RATIONALE FOR API

This API allows the possible intervention of a process administrator in arunning process. This might be
for the purpose of changing the process definition and having all subsequently created definitions reflect
the new definition.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Definition State
Event Code: WM ChangedProcessDefinitionState
Version 2.0 Page 30 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.8 WM CreateProcessl nstance

NAME
WM CreatePr ocessl nstance - Create an instance of a previously defined process.
DESCRIPTION

An operational instance of the named process definition will be created by a WFM Engine as the result of
this command. A call to WM StartProcess would then start the process.

To assign attributes to the process instance, you will make multiple callsto
WM A ssignProcessl nstanceAttribute.

The process instance ID returned by this call isvalid and reliable until WM StartProcess is called, at which
time it may be reassigned to a new value.

WWTEr r Ret Type VWMCr eat ePr ocessl nst ance (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPProcDef| D pproc_def_id,

n WMIPText pproc_inst_nane,

out WMIPProcl nst| D pproc_inst_id)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pproc_def i d Pointer to a structure containing a unique process definition 1D.
pproc_| nst —nhare Pointer to the name for the process instance created by this call.
pproc_inst_id Pointer to a structure containing the process instance ID created by this call.
ERROR RETURN VALUE

WM_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON

REQUIREMENTS
No requirements exist with regard to process model type.
RATIONALE FOR API

This API alows aworkflow participant to create an instance of a process. It is anticipated that vendor’s
implementations will be of at least 2 types: one in which the creation of a process instance and the
starting of the same are a single functionality and another in which this functionality is separate. The
callsin this API definition are thus separated to accommadate both types of implementation. Vendors
that provide the single functionality will implement the creation and start of a process through the
creation of atemporary (possibly local) proc_i nst _i d through WM CreateProcesslnstance, assign
attributes to it and then call WM StartProcess.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Create/ Start Process Instance
Event Code: WM CreatedProcess| nstance
Version 2.0 Page 31 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.9 WM StartProcess

NAME
WM StartProcess - Start the named process.
DESCRIPTION

The WM Star tProcess command directs the WFM Engine to begin executing a process, for which an
instance has been created. When a process is started through this command, the first activity(s) of the
process will be started. The process instance ID returned by this call will be valid for the life of the
process instance.

Note: The programmer needs to maintain the association between the new process instance ID and the
session in order to identify which session they need to connect to for future calls.

WWMTEr r Ret Type VWt art Process (
in WMIPSessi onHandl e psessi on_handl e,

in WMIPProclnstID pproc_inst_id,

out WMIPProcl nst1 D pnew_proc_inst_id)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_inst_id Pointer to a structure containing the process instance ID returned by the
WM CreateProcess| nstance call.

pnew_proc_inst_id pojnter to a structure containing the process instance ID created by this call.
This D will be valid for the life of the process instance.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WWV_| NVALI D_PROCESS_| NSTANCE
WM | NVALI D_ATTRI BUTE

REQUIREMENTS

The process instance to be started has a unique id within an administrative scope.
No requirements exist with regard to process model type.

RATIONALE FOR API

This API allows aworkflow participant to start a created process instance. It is anticipated that vendor’s
implementations will be of at least 2 types: one in which the creation of a process instance and the
starting of the same are a single functionality and another in which this functionality is separate. The
callsin this API definition are thus separated to accommadate both types of implementation. Vendors
that provide the single functionality will implement the creation and start of a process through the
creation of atemporary (possibly local) proc_i nst _i d through WM CreateProcessl nstance, assign
attributes to it and then call WM StartProcess.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Version 2.0 Page 32 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Audit Data Type: Create/ Start Process Instance
Event Code: WM StartedProcess| nstance

6.2.10 WM Ter minatePr ocessl nstance

NAME
WM TerminateProcessl nstance - Terminate a process instance.
DESCRIPTION

This command provides the capahility of gracefully terminating a process without aborting the process
instance. Return from this call does not imply that the process instance has terminated, for example, the
process instance could be stopped when currently running activities are complete. The exact behavior of
currently running activities is system dependent.

WWTEr r Ret Type WMTer nmi nat ePr ocessl nst ance (
in WMIPSessi onHandl e psessi on_handl e,
in WMIPProclnstlD pproc_inst_id)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_inst_id A pointer to a structure that indicates the process instance that you want to
terminate.

ERROR RETURN VALUE

The error return value for this function will include one or more of the following error codes (see Error
Return Codes section):

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WWM_| NVALI D_PROCESS_| NSTANCE

REQUIREMENTS

None
RATIONALE FOR API

To allow a process instances to be terminated.
AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Instance State
Event Code: WM TerminatedProcesslnstance
Version 2.0 Page 33 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.11 WM OpenProcessl nstanceStatesL ist

NAME

WM OpenProcessl nstanceStatesL ist - Specifies and opens the query to produce the list of states of the
process instance that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of states for a process instance. The command will aso
return, optionally, the total count of states available. If the count is requested and the implementation
does not support it, the command will return apcount value of -1. The meaning of states is dependent
upon the particular WFM Engine implementation. For example, the process instance can have states such
as suspended or in-progress.

One of the uses of this API, together with the corresponding fetch and close cals isto allow aworkflow
application to query the Workflow Engine for the available states of the process instance that match the
filter criterion, in order to offer thislist to the application user. If pproc_inst _state_filter iSNULL,
then the function, with the corresponding fetch calls will return the list of ALL states available for the
process instance.

WMTEr r Ret Type VWIOpenPr ocessl nst anceSt at esLi st (

i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst I D pproc_i nst _id,
WMTIPFi | ter pproc_inst_state_filter,
WMIBool ean count _fl ag,

out WMIPQuer yHandl e pquery_handl e,

out WMIPI nt 32 pcount)

=}

515151

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_t nst_id _ Pointer to a structure containing the unique process instance ID.
pproc_inst_state filter Fjjter associated with the process instance state.
count _fl ag Boolean flag that indicates if the total count of process instance states
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of states for this process instance.
ERROR RETURN VALUE
WM_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE

Version 2.0 Page 34 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.12 WM FetchPr ocessl nstanceState

NAME

WM FetchProcessl nstanceState - Returns the next process instance state from the list of states of the
process instance that match the filter criterion.

DESCRIPTION

This command returns a process instance state. This fetch function will return subsequent process
instance states after every call. The fetch process is complete when the function returns the error
W NO_MORE_DATA.

WWTEr r Ret Type VWWFet chPr ocessl nst anceSt at e (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPQuer yHandl e pquery_handl e,

out WMIPProcl nst State pproc_inst_state)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
action.
pquery_handl e Identification of the specific query handle returned by the
WM OpenProcessl nstanceStatesL ist query command.
pproc_inst_state Pointer to a buffer area provided by the client application where the state

name will be placed.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

Version 2.0 Page 35 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.13 WM ClosePr ocessl nstanceStatesL ist

NAME
WM CloseProcessl nstanceStatesL ist - Closes the query for process instance states.
DESCRIPTION

WWTEr r Ret Type VWMCI 0sePr ocessl nst anceSt at esLi st (

in WMIPSessi onHandl e psessi on_handl e,
in WMIPQuer yHandl e pquery_handl e)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the

WM OpenProcessl nstanceStatesL ist query command.

ERROR RETURN VALUE

WM _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0 Page 36 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.14 WM ChangePr ocessl nstanceState

NAME
WM ChangePr ocessl nstanceState - Changes the state of the named process instance.
DESCRIPTION

This command is defined to allow a process instance to be changed temporarily to a specific state such as
suspended.

Execution of this command will cause the single process instance that is named to be transitioned to a new
state. In this case, the meaning of all states is dependent upon the particular WFM Engine
implementation. This command will set the state attribute of the process instance to a state such as
suspended or running.

WMTEr r Ret Type WWMChangePr ocessl nst anceSt at e (
in WMIPSessi onHandl e psessi on_handl e,
n WMIPProclnstl D pproc_inst_id,

in WMIPProclnstState pproc_inst_state)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_| nst_id Pointer to a structure containing a unique process instance ID.
pproc_inst_state Pointer to a structure that contains the name of the process state that you

want to change the instance to.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WWM_| NVALI D_PROCESS_| NSTANCE
WM | NVALI D_STATE

WWM_TRANSI TI ON_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique 1D within an administrative scope.
RATIONALE FOR API

This API alows the possible intervention of aworkflow participant in a running process.
AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process Instance State
Event Code: WM ChangedProcessl nstanceState
Version 2.0 Page 37 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.15 WM OpenProcessl nstanceAttributesList

NAME

WM OpenProcessl nstanceAttributesL ist - Specifies and opens the query to produce the list of attributes
that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of attributes for a process instance. The command will
also return, optionally, the total count of attributes available. If the count is requested and the
implementation does not support it, the command will return apcount value of -1.

One of the uses of this API, together with the corresponding fetch and close cals isto allow aworkflow
application to query the Workflow Engine for the available attributes that can be assigned to the process
instance, in order to offer thislist to the application user. Attribute values can be obtained as well
provided that a buffer of enough sizeis passed in the fetch call. Individual attribute values can also be
retrieved with the WM GetPr ocessl nstanceAttributeValue call. If pproc_inst _attr_filter iSNULL,
then the function, with the corresponding fetch calls will return the list of ALL attributes available for the
process instance.

WMTEr r Ret Type VWIOpenPr ocessl nst anceAttri but esLi st (
i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst I D pproc_i nst _id,

WMTPFi | ter pproc_inst_attr_filter,
WMIBool ean count _fl ag,

ut WMIPQuer yHandl e pquery_handl e,

ut WMTPI nt 32 pcount)

3‘3‘3‘3

o
—-

o

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_| nst_id _ Pointer to a structure containing the unique process instance ID.
pproc_inst_attr_filter Fjlter associated with the process instance attributes.
count _fl ag Boolean flag that indicates if the total count of process instance
attributes should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of attributes for this process instance.
ERROR RETURN VALUE
WM_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE

Version 2.0 Page 38 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.16 WM FetchProcessl nstanceAttribute

NAME

WM FetchProcessl nstanceAttribute - Returns the next process instance attribute from the list of
attributes that match the filter criterion.

DESCRIPTION

This command returns a process instance attribute. This fetch function will return subsequent process
instance attributes after every call. The fetch process is complete when the function returns the error

WM NO_MORE_DATA. The fetch function will return the attribute value as well in a buffer specified in the
call. If buffer_size iSNULL then the attribute value will not be returned. If buf f er _si ze isnot large
enough to hold the attribute value then the function will return as much of the attribute value as can be fit
in the buffer. The proper length of the attribute value is availableinthe at t ri bute_I engt h field. The
application can comparethe at t ri but e_I engt h with the buf f er _si ze to determine if the full value was
returned.

WWTEr r Ret Type WWWFet chPr ocessl nst anceAttri bute (
in WMIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMIPAttrName pattribute_nane,
out WMIPInt32 pattribute_type,
out WMIPInt32 pattribute_| ength,
out WMIPText pattribute_val ue,
in WM nt32 buffer_size)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
action.
pquery_handl e Identification of the specific query handle returned by the
_ WM OpenProcessl nstanceAttributesL ist query command.
pattribute name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute val ue.
pattribute_val ue Pointer to a buffer area provided by the client application where the
_ attribute value will be placed.
buffer_size Size of the buffer.
ERROR RETURN VALUE
WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

Version 2.0 Page 39 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.17 WM CloseProcessl nstanceAttributesList

NAME
WM CloseProcessl nstanceAttributesList - Closes the query for process instance attributes.
DESCRIPTION

WWTEr r Ret Type WWMCI 0sePr ocessl nst anceAttri but esLi st ¢

in WMIPSessi onHandl e psessi on_handl e,
in WMTPQuer yHandl e pquery_handl e)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the

WM OpenProcessl nstanceAttributesL ist query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0 Page 40 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.18 WM GetProcessl nstanceAttributeValue

NAME

WM GetProcessl nstanceAttributeValue - Returns the value, type and length of a process instance
attribute specified by the proc_inst _id and attri bute_name parameters.

DESCRIPTION

This command will return the value of a process instance attribute in the buffer specified in the call.

WWTEr r Ret Type WWMGet Pr ocessl nst anceAttri but eVal ue (
i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst I D pproc_i nst _id,

WMTPAt t r Name pattri but e_nane,

WMTPI nt 32 pattribute_type,

out WMIPInt32 pattribute_| ength,

out WMIPText pattribute_val ue,

in WM nt32 buffer_size)

=}

o‘_‘_‘
cC|SIS
—

o
c
—

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.

pattribute_name Pointer to the name of the attribute.

pattribute_type Pointer to the type of the attribute.

pattribute_length Pointer to the length of the attribute val ue.

pattribute_val ue Pointer to a buffer area provided by the client application where the
attribute value will be placed.

buffer_size Size of the buffer to be filled.

ERROR RETURN VALUE

WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
W | NVALI D_ATTRI BUTE

WW_| NSUFFI CI ENT_BUFFER_SI ZE

Version 2.0 Page 41 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.2.19 WM AssignProcessl nstanceAttribute

NAME
WM AssignProcessl nstanceAttribute - Assign the proper attribute to process instance(s)

DESCRIPTION

This command tells the WFM Engine to assign an attribute, change an attribute or to change the value of
an attribute of a process instance.

This command changes the value of an attribute of a processinstance. Attributes of process instances are
of the kind called Process Control and Process Relevant Data. These attributes are specified as
quadruplets of name, type, length and value.

WMTEr r Ret Type WWMASSI gnProcessl nst anceAttri bute (

in WMIPSessi onHandl e psessi on_handl e,
i WMTPPr ocl nst I D pproc_i nst _id,
WMTPAt t r Name pattri but e_nane,
WMTI nt 32 attribute_type,
WMTI nt 32 attribute_l ength,
WMTPText pattribute_val ue)

151515

=}

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pproc_inst_id Pointer to a structure containing the process instance ID that indicates the
process for which the attribute will be assigned.

pattribute_name Pointer to the name of the attribute.

attribute_type Type of the attribute.

attribute_length Length of the attribute value.

pattribute_val ue Pointer to a buffer area provided by the client application where the

attribute value will be placed.

ERROR RETURN VALUE

WM _SUCCESS
WM | NVALI D_SESSI ON_HANDLE

WWM_| NVALI D_PROCESS_| NSTANCE
W | NVALI D_ATTRI BUTE

WM ATTRI BUTE_ASSI GNVENT_FAI LED

REQUIREMENTS

None
RATIONALE FOR API

For various business reasons, certain pieces of work are required to be handled with particular attributes
(e.g. priority) relative to other pieces of like work. This command allows attributes to be set on those
pieces of work. In some cases, these attributes are determined by the WFM product based upon data
values existing during process execution. The setting of these attributes through the use of thisAPI is
provided to cover the cases where applications set them upon requests from users.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Version 2.0 Page 42 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Audit Data Type: Change Process Instance Attributes
Event Code: WM ChangedProcessl nstanceAttributes
Version 2.0 Page 43 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.3 WAPI Activity Control Functions

Activity Control Functions can be defined as those which change the operational state of one or more
activity instances. These API calls are intended for use by the WFM end user. However, some of the API
cals, or parameters within some of the API calls, may affect multiple users and would normally be
restricted to the use of a process administrator.

6.3.1 WM OpenActivitylnstanceStatesL ist

NAME

WM OpenActivityl nstanceStatesL ist - Specifies and opens the query to produce the list of states of the
activity instance that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of states for an activity instance. The command will
also return, optionally, the total count of states available. If the count is requested and the implementation
does not support it, the command will return apcount value of -1.

One of the uses of this API, together with the corresponding fetch and close cals isto allow aworkflow
application to query the Workflow Engine for the available states of the activity instance that match the
filter criterion, in order to offer thislist to the application user. If pact _i nst _state_filter iSNULL,
then the function, with the corresponding fetch calls will return the list of ALL states available for the
activity instance.

WMTEr r Ret Type VWIOpenActi vityl nst anceSt at esLi st (

in WMIPSessi onHandl e pse55| on_handl e,

in WMIPProclnstlD pproc_inst_i id,

i WMIPAct i vityl nstl D pactivity_i nst _id,
WMTPFi | ter pact_inst_state_filter,
WMIBool ean count _fl ag,
out WMTPQuer yHandl e pquery_handl e,
out WMIPI nt 32 pcount)

251515

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_t nst - d _ Pointer to a structure containing a unique process instance ID.
pactivity_Inst_l d_ Pointer to a structure containing the unique activity instance ID.
pact_inst_state filter Fjjter associated with the activity instance state.
count _fl ag Boolean flag that indicates if the total count of activity instance states
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of states for this activity instance.
ERROR RETURN VALUE
WM_SUCCESS

VK| NVALI D_SESSI ON_HANDLE
WWW_| NVALI D_PROCESS_| NSTANCE
V| NVALI D_ACTI VI TY_I NSTANCE

Version 2.0 Page 44 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.3.2 WM FetchActivitylnstanceState

NAME

WM FetchActivityl nstanceState - Returns the next activity instance state, from the list of states of the
activity instance that match the filter criterion.

DESCRIPTION

This command returns an activity state. This fetch function will return subsequent activity states after
every call. The fetch process is complete when the function returns the error Wi NO_MORE_DATA.

WMTEr r Ret Type WWFet chActi vityl nstanceState (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPQuer yHandl e pquery_handl e,

out WMIPActivitylnstState pactivity_inst_state)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the
WM OpenActivityl nstanceStatesL ist query command.

pactivity inst_state Pointer to a buffer area provided by the client application where the state

name will be placed.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

Version 2.0 Page 45 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.3.3 WM CloseActivityl nstanceStatesL ist

NAME
WM CloseActivityl nstanceStatesL ist - Closes the query for activity instance states.
DESCRIPTION

WMTEr r Ret Type VWCl oseAct i vityl nst anceSt at esLi st ¢

in WMIPSessi onHandl e psessi on_handl e,
in WMIPQuer yHandl e pquery_handl e)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the

WM OpenActivityl nstanceStatesL ist query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0 Page 46 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.3.4 WM ChangeActivityl nstanceState

NAME
WM ChangeActivityl nstanceState - Changes the state of the named activity instance.
DESCRIPTION

This command directs a WFM Engine to change the state of a single activity instance within a process
instance. This allows the state of one activity instance to be changed, without impacting othersin the
process instance.

For example, this command will be used to change the state of an activity instance to suspended. This
command can be used afterwards to change the state of the activity instance back to running. The
implementation documentation will provide the names and semantics of the supported activity states for a
particular implementation.

WMTEr r Ret Type WWMChangeAct i vi tyl nstanceState (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPProclnstl D pproc_inst_id,

n WMIPActivitylnstlD pactivity_inst_id,

n WMIPActivitylnstState pactivity_inst_state)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
_ _ action.

pproc_inst_ d _ Pointer to a structure containing a unique process instance ID.

pactivity_inst_id Pointer to structure containing the activity instance ID of the activity

o whose state to change.
pactivity_inst_state pojnter to astructure that contains the name of the activity instance state
that you want to change to.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WWM_| NVALI D_PROCESS_| NSTANCE
WM I NVALI D_ACTI VI TY_I NSTANCE
WM | NVALI D_STATE

WWM_TRANSI TI ON_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique 1D within an administrative scope.
Each activity instance must have a unique ID within a process instance.

RATIONALE FOR API

A workflow participant may wish to modify the state attributes associated with a particular activity
instance.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Activity Instance State
Event Code: WM ChangedA ctivitylnstanceState
Version 2.0 Page 47 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.3.5 WM OpenActivitylnstanceAttributesList

NAME

WM OpenActivityl nstanceAttributesL ist - Specifies and opens the query to produce the list of activity
attributes that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of attributes for an activity instance. The command
will also return, optionally, the total count of attributes available. If the count is requested and the
implementation does not support it, the command will return apcount value of -1.

One of the uses of this API, together with the corresponding fetch and close cals isto allow aworkflow
application to query the Workflow Engine for the available attributes that can be assigned to the activity
instance, in order to offer thislist to the application user. Attribute values can be obtained as well
provided that a buffer of enough sizeis passed in the fetch call. Individual attribute values can also be
retrieved with the WM GetActivityl nstanceAttributeValue call. If pact _inst _attr_filter iSNULL,
then the function, with the corresponding fetch calls will return the list of ALL attributes available for the
activity instance.

WMTEr r Ret Type WVDpenAct ivitylnstanceAttri butesList (
WMIPSessi onHandl e pse55| on_handl e,
WMTPPr ocl nst I D pproc_i nst _i id,

WMIPAct i vityl nstl D pacti vi ty_inst_id,
WMIPFi | ter pact_inst_attr_filter,
WMIBool ean count _fl ag,

out WMTPQuer yHandl e pquery_handl e,

out WMIPI nt 32 pcount)

=}

2515151515

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_| nst - d _ Pointer to a structure containing the unique process instance ID.
pactivity_Inst_l fj Pointer to a structure containing the unique activity instance ID.
pact inst_attr_filter Fjjter associated with the activity instance attributes.
count _fl ag Boolean flag that indicates if the total count of activity instance attributes
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of attributes for this activity instance.
ERROR RETURN VALUE
W SUCCESS

WW_| NVALI D_SESSI ON_HANDLE
WWW_| NVALI D_PROCESS_| NSTANCE
V| NVALI D_ACTI VI TY_I NSTANCE

Version 2.0 Page 48 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.3.6 WM FetchActivityl nstanceAttribute

NAME

WM FetchActivityl nstanceAttribute - Returns the next activity instance attribute from the list of activity
attributes that match the filter criterion.

DESCRIPTION

This command returns a activity instance attribute. This fetch function will return subsequent activity
instance attributes after every call. The fetch process is complete when the function returns the error

WM NO_MORE_DATA. The fetch function will return the attribute value as well in a buffer specified in the
call. If buffer_size iSNULL then the attribute value will not be returned. If buf f er _si ze isnot large
enough to hold the attribute value then the function will return as much of the attribute value as can be fit
in the buffer. The proper length of the attribute value is availableinthe at t ri bute_I engt h field. The
application can comparethe at t ri but e_I engt h with the buf f er _si ze to determine if the full value was
returned.

WMTEr r Ret Type WWFet chActi vityl nstanceAttri bute (
in WMIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e,
out WMIPAttrName pattribute_nane,
out WMIPInt32 pattribute_type,
out WMIPInt32 pattribute_| ength,
out WMIPText pattribute_val ue,
in WM nt32 buffer_size)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
action.
pquery_handl e Identification of the specific query handle returned by the
_ WM OpenActivityl nstanceAttributesL ist query command.
pattribute name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute val ue.
pattribute_val ue Pointer to a buffer area provided by the client application where the
_ attribute value will be placed.
buffer_size Size of the buffer.
ERROR RETURN VALUE
WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

Version 2.0 Page 49 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.3.7 WM CloseActivitylnstanceAttributesL ist

NAME
WM CloseActivityl nstanceAttributesList - Closes the query for activity instance attributes.
DESCRIPTION

WMTEr r Ret Type WMCl 0seActi vityl nstanceAttri butesLi st ¢

in WMIPSessi onHandl e psessi on_handl e,
in WMIPQuer yHandl e pquery_handl e)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the

WM OpenActivityl nstanceAttributesL ist query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0 Page 50 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.3.8 WM GetActivitylnstanceAttributeValue

NAME

WM GetActivityl nstanceAttributeValue - Returns the value, type and length of an activity instance
attribute specified by the pproc_i nst _id, pactivity_inst_id andattribute_nanme parameters.

DESCRIPTION

This command will return the value of an activity instance attribute in the buffer specified in the call.

WMTEr r Ret Type WMGet Act i vi tyl nst anceAttri but eVal ue (
i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst I D pproc_i nst _id,

WMIPActi vitylnstl D pactivity_inst_id,
WMTPAt t r Name pattri but e_nane,

out WMIPInt32 pattribute_type,

out WMIPInt32 pattribute_| ength,

out WMIPText pattribute_val ue,

in WM nt32 buffer_size)

=}

51515

o
c
—

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this

action.
Pointer to a structure containing the unique process instance ID.
Pointer to a structure containing the unique activity instance ID.

pproc_inst_id
pactivity_inst_id

pattribute name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.

pattribute_val ue Pointer to a buffer area provided by the client application where the

attribute value will be placed.

buffer_size Size of the buffer to be filled.
ERROR RETURN VALUE
VWM SUCCESS

WM | NVALI D_SESSI ON_HANDLE
W | NVALI D_ATTRI BUTE
WW_| NSUFFI CI ENT_BUFFER_SI ZE

Version 2.0 Page 51 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.3.9 WMAssignActivityl nstanceAttribute

NAME
WM AssignActivityl nstanceAttribute - Assign an attribute to an activity instance.
DESCRIPTION

This command tells the WFM Engine to assign an attribute, to change an attribute or to change the value
of an attribute of the activity instance within a named process definition.

This command changes the value of the attributes of aactivity instance. These attributes of activity
instances are of the kind called Process Control and Process Relevant Data. These attributes are
specified as quadruplets of name, type, length and value.

WMTEr r Ret Type VWWASSI gnAct i vi tyl nstanceAttri bute (

i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pproc_def _id,

WMIPActi vitylnstl D pactivity_inst_id,
WMTPALt t r Name pattri but e_nane,

WMTI nt 32 attribute_type,

WMTI nt 32 attribute_l ength,

WMTPText pattribute_val ue)

‘3‘3‘3‘3‘3‘3

=}

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the unique process instance ID.

pactivity inst_id pointer to a structure containing the activity instance identification for which
the attribute will be assigned.

pattribute_name Pointer to the name of the attribute.

attribute_type Type of the attribute.

attribute_length | ength of the attribute value.

pattribute value pointer to abuffer area provided by the client application where the attribute
value will be placed.

ERROR RETURN VALUE

WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE

WWM_| NVALI D_PROCESS_| NSTANCE
WM I NVALI D_ACTI VI TY_I NSTANCE
W | NVALI D_ATTRI BUTE

WM ATTRI BUTE_ASSI GNVENT_FAI LED

REQUIREMENTS

None

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign Activity Instance Attributes
Event Code: WM AssignedActivitylnstanceAttributes
Version 2.0 Page 52 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.4 WAPI Process Status Functions

The process status functions are intended to provide a view of the work done, work to be done, work
associated with aworkflow participant or group of workflow participants, etc. The status queries may be
requested by a normal workflow participant or may be requested by a manager or process administrator
who wishes to view the progress of work within his’/her domain.

The status API calls are structured such that they provide views ranging from a view of global work to a
view of work within a single process instance. These views are as follows:

1| All the process instances associated with a WM (Open+Fetch+Close)Pr ocessl nstancesL ist
process definition.
2| A view of asingle process instance. WM GetPr ocessl nstance

In addition, various filters (parameters) are provided with the calls such that the information returned may
be tailored.

The API functions associated with these API calls are described in this section.

Version 2.0 Page 53 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.4.1 WM OpenProcessl nstancesL ist

NAME

WM OpenProcesslnstancesList - Specifies and opens the query to produce alist of process
instances that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of process instances that match the specified value for
the attribute. The command will also return, optionally, the total count of instances available. If the
count is reguested and the implementation does not support it, the command will return apcount value of
-1.

This command will be used to set up awide variety of queries of process instances. For example, this
command will be used to set up the query for alist of completed or suspended process instances. If
pproc_inst_filter iSNULL, then the function, with the corresponding fetch calls will return the list of
ALL accessible process instances.

WMTEr r Ret Type VWIOpenPr ocessl nst ancesLi st (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPFilter pproc_inst_filter,

in WMIBool ean count_fl ag,
WMTPQuer yHandl e pquery_handl e,

u
ut WMTPI nt 32 pcount)

o|——
—

o

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pproc_inst_filter Pointer to a structure containing the information for this request.
count _fl ag Boolean flag that indicates if the total count of process instances should be
returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of process instances that fulfill the filter condition.
ERROR RETURN VALUE
WM_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_FI LTER

REQUIREMENTS
None
RATIONALE FOR API

The requester of the information needs to know what work of a particular type isin process or needs to
know what work has compl eted.

Version 2.0 Page 54 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.4.2 WM FetchProcessl nstance

NAME

WM FetchProcessl nstance - Returns the next process instance from the list of process instances
that met the selection criterion stated in the corresponding WM OpenProcessl nstancesList call.

DESCRIPTION

This command returns a process instance. This fetch function will return subseguent process instances
after every call. The fetch processis complete when the function returns the error W NO_MORE_DATA.

WWTEr r Ret Type VWWFet chPr ocessl nst ance (
in WMIPSessi onHandl e psessi on_handl e,

in WMIPQuer yHandl e pquery_handl e,

out WMIPProcl nst pproc_inst_buf_ptr)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the

_ WM OpenProcessl nstancesL ist query command.
pproc_inst_buf_ptr pointer to abuffer area provided by the client application where the set of
process instances will be placed.

ERROR RETURN VALUE

W _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

REQUIREMENTS

None

Version 2.0 Page 55 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.4.3 WM CloseProcessl nstancesL ist

NAME
WM CloseProcessl nstancesL ist - Closes the query of process instances.

DESCRIPTION

This command will close the query of process instances that match the specified query attribute, specified
in the WM OpenPr ocessl nstancesL ist command. The query handle can no longer be used.

WWTEr r Ret Type VWMCI 0sePr ocessl nst ancesLi st ¢
in WMIPSessi onHandl e psessi on_handl e,

in WMIPQuer yHandl e pquery_handl e)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the

WM OpenProcessl nstancesL ist query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0 Page 56 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.4.4 WM GetProcessl nstance

NAME
WM GetPr ocessl nstance - Return a specific process instance record.
DESCRIPTION

The WM GetProcessl nstance provides information about what work has been done within a
process instance and what is the current work being done within the process instance.

WWMTEr r Ret Type WWMGet Pr ocessl nst ance (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPProclnstl D pproc_inst_id,

out WMIPProcl nst pproc_inst)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.
pproc_nst_| d Pointer to the process instance identification.

pproc_i nst Pointer to a structure containing the requested process instance information.

Includes the state and other attributes of the process instance.

ERROR RETURN VALUE

WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE

WWM_| NVALI D_PROCESS_| NSTANCE
REQUIREMENTS

None

Version 2.0 Page 57 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.5 WAPI Activity Status Functions

The process status functions are intended to provide a view of the work done, work to be done, work
associated with aworkflow participant or group of workflow participants, etc. The status queries may be
requested by a normal workflow participant or may be requested by a manager or process administrator
who wishes to view the progress of work within his’/her domain.

The status API calls are structured such that they provide views ranging from a view of global work to a
view of work within a single activity instance. These views are as follows:

1| All the activity instances associated to a WM (Open+Fetch+Close)Activityl nstancesL ist
process definition or instance

2| A view of asingle activity within a process WM GetActivityl nstance
instance.

In addition, various filters (parameters) are provided with the calls such that the information returned may
be tailored.

The API functions associated with these API calls are described in this section.

Version 2.0 Page 58 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.5.1 WM OpenActivitylnstancesL ist

NAME

WM OpenActivityl nstancesL ist - Specifies and opens the query to produce alist of activity
instances that match the criterion of the filter.

DESCRIPTION

This command will return a query handle for alist of activity instances that match the criterion of the
filter. The command will also return, optionally, the total count of activity instances available. If the
count is reguested and the implementation does not support it, the command will return apcount value of
-1.

This command will be used to set up awide variety of queries of activity instances. For example, this
command will be used to set up the query for alist of completed or suspended activity instances. If
pactivity_inst_filter iISNULL, then the function, with the corresponding fetch calls will return the list
of ALL accessible activity instances.

WMTEr r Ret Type WWMOpenAct i vi t yl nst anceslLi st (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPFi |l ter pactivity_inst_filter,

in WMIBool ean count_fl ag,
WMTPQuer yHandl e pquery_handl e,

u
ut WMTPI nt 32 pcount)

o|——
—

o

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
o _ action.

pactivity inst_filter pojnter to astructure containing the information for this request.

count _fl ag Boolean flag that indicates if the total count of activity instances should be
returned.

pquery_handl e Pointer to a structure containing a unique query information returned by this
function.

pcount Total number of activity instances that fulfill the filter condition.

ERROR RETURN VALUE

W SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_FI LTER
REQUIREMENTS
None
RATIONALE FOR API

The requester of the information needs to know what work of a particular type isin process or needs to
know what work has compl eted.

Version 2.0 Page 59 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.5.2 WM FetchActivitylnstance

NAME

WM FetchActivityl nstance - Returns the next activity instance from the list of activity instances
that met the selection criterion in the corresponding WM OpenAdctivitylnstancesList call.

DESCRIPTION

This command returns an activity instance. This fetch function will return subsequent activity instances
after every call. The fetch processis complete when the function returns the error W NO_MORE_DATA.

WMTEr r Ret Type WWMFet chAct i vityl nstance (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPQuer yHandl e pquery_handl e,

out WMIPActivitylnst pactivity_inst)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the
o WM OpenActivityl nstancesList query command.
pactivity_inst Pointer to a buffer area provided by the client application where the set of

activity instances will be placed.

ERROR RETURN VALUE

W _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

REQUIREMENTS

None

Version 2.0 Page 60 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.5.3 WM CloseActivitylnstancesL ist

NAME
WM CloseActivityl nstancesL ist - Closes the query of activity instances.
DESCRIPTION

This command will close the query of activity instances that match the specified query attribute, specified
in the WM OpenActivityl nstancesL ist command. The query handle can no longer be used.

WMTEr r Ret Type VWMCl 0seAct i vi tyl nst ancesLi st (
in WMIPSessi onHandl e psessi on_handl e,
in WMTPQuer yHandl e pquery_handl e)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the

WM OpenActivityl nstancesList query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
REQUIREMENTS

None

Version 2.0 Page 61 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.5.4 WM GetActivitylnstance

NAME
WM GetActivityl nstance - Returns the record of a specific activity instance.
DESCRIPTION

The WM GetActivityl nstance command provides status about an activity within a process
instance.

WMTEr r Ret Type WMGet Act i vi tyl nst ance (

i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst I D pproc_i nst _id,
WMIPActi vitylnstl D pactivity_inst_id,
WMTPActi vitylnst pactivity_inst)

=}

o‘_‘_‘
cC|SIS
—

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pproc_nst_ d _ Pointer to a structure containing the process instance identification.
pactivity inst_td pointer to astructure containing the identification of the activity instance.
pactivity_inst Pointer to a structure containing the activity instance information.
ERROR RETURN VALUE

VWM SUCCESS

WM | NVALI D_SESSI ON_HANDLE

WW_| NVALI D_PROCESS_| NSTANCE

WW_I NVALI D_ACTI VI TY_I NSTANCE
REQUIREMENTS

None

Version 2.0 Page 62 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6 WAPI Worklist Functions

The WAPI worklist API calls provide workflow participants access to information about work to which
they have been assigned. As described by the WFM Coalition reference model, a process consists of a set
of activities connected in such away to control the sequencing of application invocation. An activity is
associated with one or more applications to be invoked and also, during run time, is associated with the
person(s) who has been assigned to do the work. Depending upon a WFM product’ s implementation, a
workflow participant may be assigned one or more pieces of work at any one time. Each piece of work
assigned to aworkflow participant is called a‘work item’ and the collection of al work items assigned to
aworkflow participant is called that workflow participant’s ‘worklist’.

(Note: To clarify the difference between an ‘activity’ and a‘work item’ the following discussion is
included. When a process is being defined (build time), an *activity’ is the construct used to define a piece
of work to be done. It serves as atype of anchor point for further descriptions of that work to be done (i.e.,
the name of the application to be invoked, possibly a reference to skills needed to do the work, a symbolic
name denoting the network address where the application is to be executed, etc.). During run time, when
the activity is ready to be executed and one or more candidate persons are assigned to do the work, awork
item is created and placed on that person(s) worklist. So, even though an activity and awork item both
represent a piece of work, they come into existence at different points in time, there may be more than one
work item for an activity and some operational characteristics may be different.)

A worklist then is defined as: the result of an implementation-defined query against the work item space.
Itisalist of work items and awork item is one element in aworklist.

The API callsin this section exist for the manipulation of work items and worklists.

Version 2.0 Page 63 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.1 WMOpenWorkList

NAME

WM OpenWorkList - Specifies and opens the query to produce the worklist that matches the
criterion of the filter.

DESCRIPTION

This command provides the capability of returning alist of work items assigned to a specified workflow
participant or aworkgroup. The requester may be making the request on behalf of himself or may be a
manager wanting to know what work has been assigned to a particular person or a workgroup.

A query handle will be returned for the list of work items that match the specified value for the attribute.
The command will aso return, optionally, the total count of work items available. If the count is
reguested and the implementation does not support it, the command will return apcount value of -1. If
pworklist_filter iSNULL, then the function, with the corresponding fetch calls will return the list of
ALL accessible work items.

WMTEr r Ret Type VWOpenWor kKLi st (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPFilter pworklist_filter,

in WMIBool ean count_fl ag,
WMTPQuer yHandl e pquery_handl e,

u
ut WMTPI nt 32 pcount)

o|——
—

o

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pworklist_filter Pointer to a structure containing the filter information for this request.
count_flag Boolean flag that indicates if the total count of work items should be returned.
pquery_handl e Pointer to a structure containing a unique query information returned by this
function.

pcount Total number of work items that fulfill the filter condition.
ERROR RETURN VALUE

WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_FI LTER

REQUIREMENTS
None

RATIONALE FOR API

A workflow participant must be able to determine what work has been assigned. A manager must be able
to determine who has work and what work is to be done within a department.

Version 2.0 Page 64 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.2 WMFetchWorkltem

NAME

WM FetchWorkltem - Returns the next work item from the worklist that met the selection criterion in
the corresponding WM OpenWorkList call.

DESCRIPTION

This command returns awork item. This fetch function will return subsequent work items after every
call. The fetch process is complete when the function returns the error Wi NO_MORE_DATA.

WWTEr r Ret Type VWWFet chWor kit em (
in WMIPSessi onHandl e psessi on_handl e,

n WMTPQuer yHandl e pquery_handl e,

out WMIPWorkltem pwork_item

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.

pquery_handl e I dentification of the specific query handle returned by the WM OpenWorkL ist
_ guery command.

pwork_item Pointer to a buffer area provided by the client application where the set of work

item will be placed.

ERROR RETURN VALUE

W _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

Version 2.0 Page 65 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.3 WMCloseWorkList

NAME
WM CloseWorkList - Closes the query of work items.

DESCRIPTION

This command will close the query of work items that match the specified query filter, specified in the
WM OpenWorkList command. The query handle can no longer be used.

WWTEr r Ret Type VWMCl oseWbr kLi st ¢
in WMIPSessi onHandl e psessi on_handl e,
in WMIPQuer yHandl e pquery_handl e)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the

WM OpenWorkList query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0 Page 66 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.4 WMGetWorkltem

NAME
WM GetWorkltem - Returns the record of a specific work item
DESCRIPTION

This command allows a workflow participant to designate which piece of work he wishesto do. The
viewer may be selecting awork item from alist obtained by the WM OpenWorkL ist command.

This command operates on asingle work item basis. This command execution need not imply that the
work item is reserved or locked.

WWTEr r Ret Type WMGet Wor ki t em (

in WMIPSessi onHandl e psessi on_handl e,
n WMIPProclnstl D pproc_inst_id,

n WMIPWorkltem D pwork_item.id,

out WMIPWor kltem pwork_item)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.
pproc_| nst -! d Pointer to a structure containing the unique process instance ID.

pwor k_f temid Pointer to a structure containing the work item identification for this request.
pwork_i tem Pointer to a structure containing the work item being returned by this function.

ERROR RETURN VALUE

The error return value for this function will include one or more of the following error codes (see Error
Return Codes section):

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE
WM | NVALI D_WORKI TEM

REQUIREMENTS

The application issuing the command must have sufficient identification information to select the
work item desired.

RATIONALE FOR API
A workflow participant must be able to tell the WFM Engine which piece of work is to be selected.

AUDIT INFORMATION
The following audit information is directly related to this function and might be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Work Item State

Event Code: WM SelectedWorkltem

In this paticular caseit is left to the implementation to realize a state change of the Work Item when a
WM GetWorkltem operation is invoked.

Version 2.0 Page 67 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.5 WM CompleteWorkltem

NAME

WM CompleteWorkltem - Tell the WFM Engine that this work item has been compl eted.
DESCRIPTION

This command allows a workflow participant to tell the WFM Engine that a work item has been
completed.

To change awork item's attributes, multiple calls to WMAssignWorkltemAttribute.

WMTEr r Ret Type VWIConpl et eVr kil t em (

in WMIPSessi onHandl e psessi on_handl e,
n WMIPProclnstl D pproc_inst_id,
n WMIPWorkltem D pwork_item.id)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pproc_| nst -! d Pointer to a structure containing the unique process instance ID.
pwork_itemid Pointer to a structure containing the work item identification for this request.
ERROR RETURN VALUE

WhM_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WWM_| NVALI D_PROCESS_| NSTANCE
WM | NVALI D_WORKI TEM

REQUIREMENTS
None
RATIONALE FOR API

WFM products implement various ways to determine when an activity is complete. The use of the API
may range from just a successful/unsuccessful indication to placing values in the completion state which
might cause the WFM Engine to select a future model navigation path from among many.

Typically, awork item will correspond to an activity instance. However the API should allow the
existence of multiple work items per activity, executed one at atime. So completion of awork item does
not necessarily mean that all work for an activity instance is completed. Completion of awork item could
trigger the start of the next work item that corresponds to that activity instance. The Workflow Engine
will determine the next work item based on the process definition.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Work Item State
Event Code: WM CompletedWorkltem

6.6.6 WM OpenWorkitemStatesL ist

Version 2.0 Page 68 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

NAME

WM OpenWorkitemStatesL ist - Specifies and opens the query to produce the list of states of workitem
that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of states for a workitem. The command will also
return, optionally, the total count of definitions available. If the count is requested and the
implementation does not support it, the command will return apcount value of -1.

One of the uses of this API, together with the corresponding fetch and close cals isto allow aworkflow
application to query the Workflow Engine for the available states of the workitem that match the filter
criterion, in order to offer thislist to the application user. For example, workitems can be in states such as
disabled (thus disallowing temporarily the creation of new process definitions), or enabled (thus allowing
again the creation of new process definitions based on the named definition). If pworki tem state_filter
isNULL, then the function, with the corresponding fetch calls will return the list of ALL states available
for the definition.

WMTEr r Ret Type VWOpenWor ki t enSt at esLi st (

i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pworkitem.id,

WMTPFi | ter pworkitemstate filter,
WMIBool ean count _fl ag,

ut WMIPQuer yHandl e pquery_handl e,

ut WMTUI nt 32 pcount)

3‘3‘3‘3

o
—-

o

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.
pwor kf tem.id _ Pointer to a structure containing the unique workitem ID.
pworkitemstate_filter Fjlter associated with the workitem state.
count _fl ag Boolean flag that indicates if the total count of process definition states
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of states for this process definition.
ERROR RETURN VALUE
WM_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON

Version 2.0 Page 69 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.7 WMFetchWorkitemState

NAME

WM FetchWorkitemState - Returns the next workitem state, from the list of states of the workitem that
match the filter criterion.

DESCRIPTION

This command returns a workitem state. This fetch function will return subsequent workitem states after
every call. The fetch process is complete when the function returns the error Wi NO_MORE_DATA.

WWTEr r Ret Type VWWFet chWorki tenfSt at e (
in WMIPSessi onHandl e psessi on_handl e,

n WMIPQuer yHandl e pquery_handl e,

out WMIPProcDef St at e pwor ki tem state)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the
_ WM OpenWorkitemStatesL ist query command.
pworkitem state Pointer to a buffer area provided by the client application where the state name
will be placed.
ERROR RETURN VALUE
WW_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

Version 2.0 Page 70 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.8 WM CloseWorkitemStatesL ist

NAME
WM CloseWorkitemStatesL ist - Closes the query for workitem states.
DESCRIPTION

WWTEr r Ret Type VWMCl oseWor ki t enfSt at esLi st (

in WMIPSessi onHandl e psessi on_handl e,
in WMIPQueryHandl e pquery_handl e)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the

WM OpenWorkitemStatesL ist query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0 Page 71 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.9 WM ChangeWorkitemState

NAME
WM ChangeW or kitemState - Changes the state of the named workitem.
DESCRIPTION

This command is defined to allow a workitem to be changed temporarily to a specific state such as
notRunning, or running. See Appendix G for adiscussion of states.

WMTEr r Ret Type VWWChangeWor ki t enSt at e (
in WMIPSessi onHandl e psessi on_handl e,
n WMTPPr ocDef | D pworkitem.id,

in WMTPPr ocDef St at e pworkitem state)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.

pworitem.| d Pointer to a structure containing a unique workitem ID.

pworkitem state Pointer to a structure that contains the name of the state to change the
workitem to.

ERROR RETURN VALUE

VWM SUCCESS

WM_| NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_DEFI NI TI ON
WW_| NVALI D_STATE
W TRANSI TI ON_NOT_ALLOWED
REQUIREMENTS
Each workitem must have a unique 1D within an administrative scope.

RATIONALE FOR API

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Work Item State
Event Code: WM ChangedWorkltemState
Version 2.0 Page 72 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.10 WM ReassignWorkltem

NAME
WM ReassignWorkltem
DESCRIPTION

This command allows awork item from one workflow participant’s worklist to be reassigned to another
workflow participant’ s worklist.

(Note: Possible future releases of the API specification may provide for an entire worklist to be reassigned
in total.)

WMTEr r Ret Type VWReassi gnWor kil t em (

i WMIPSessi onHandl e psessi on_handl e,
WMTPW | Parti ci pant psource_user,
WMTPW | Parti ci pant ptarget_user,
WMTPPr ocl nst I D pproc_i nst_id,
WMTPWor kit em D pwork_i tem i d)

151515

=}

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
psource_user The identification of aworkflow participant from which work is to be reassigned.
ptar geF —user The identification of the workflow participant to whom work is to be assigned.
pproc_| nst -! d Pointer to a structure containing the unique process instance ID.
pwork_item.id Pointer to a structure containing the work item identification being reassigned.
ERROR RETURN VALUE

WM_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WWV_| NVALI D_PROCESS_| NSTANCE
WM | NVALI D_WORKI TEM

WM | NVALI D_SOURCE_USER

WM | NVALI D_TARGET_USER

REQUIREMENTS
The workflow participant making the reassignment request has the authority to do so.
RATIONALE FOR API

A workflow participant having work assigned may be away from work for various reasons and the work
must be given to another workflow participant to get it accomplished. A WFM Engine may direct all
work items to asingle worklist (departmental worklist for example).

With the reassignment API, workflow participants in that department may reassign work to themselves
after they finish a current work item and become available for more work. This creates a possible de facto
people load balancing scheme.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign / Reassign Work Item
Event Code: WM ReassignedWorkltem
Version 2.0 Page 73 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.11 WMOpenWorkltemAttributesList

NAME

WM OpenWorkltemAttributesL ist - Specifies and opens the query to produce the list of work item
attributes that match the filter criterion.

DESCRIPTION

This command will return aquery handle for alist of attributes for a work item. The command will aso
return, optionally, the total count of attributes available. If the count is requested and the implementation
does not support it, the command will return apcount value of -1.

One of the uses of this API, together with the corresponding fetch and close cals isto allow aworkflow
application to query the Workflow Engine for the available attributes that can be assigned to the work
item, in order to offer thislist to the application user. Attribute values can be obtained as well provided
that a buffer of enough size is passed in the fetch call. Individual attribute values can aso be retrieved
with the WM GetWorkltemAttributeValuecall. If pwork_itemattr_filter iSNULL, thenthe
function, with the corresponding fetch calls will return the list of ALL attributes available for the work
item.

WITEr r Ret Type WVDpenW)r kltemAttri but esList (
WMIPSessi onHandl e pse55| on_handl e,
WMTPPr ocl nst I D pproc_i nst _i id,
WMTPWor k1t em D pwor k_i tem_i d,
WMTPFi | ter pwork_itemattr_filter,
WMIBool ean count _fl ag,

WMTPQuer yHandl e pquery_handl e,

ut WMTPI nt 32 pcount)

5151515

=}

o
c
—

o

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
_ _ action.

pproc_| nst - d Pointer to a structure containing the unique process instance ID.

pwor k_f tem.id _ Pointer to a structure containing the unique work item ID.

pwork_itemattr_filter Fjlter associated with the work item attributes.

count _fl ag Boolean flag that indicates if the total count of work item attributes should
be returned.

pquery_handl e Pointer to a structure containing a unique query information.

Pcount Total number of attributes for this work item.

ERROR RETURN VALUE

WM_SUCCESS

VK| NVALI D_SESSI ON_HANDLE
WWW_| NVALI D_PROCESS_| NSTANCE
VK| NVALI D_WORKI TEM

Version 2.0 Page 74 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.12 WM FetchWorkltemAttribute

NAME

WM FetchWorkltemAttribute - Returns the next work item attribute from the list of work item attributes
that match the filter criterion.

DESCRIPTION

This command returns a work item attribute. This fetch function will return subsequent work item
attributes after every call. The fetch process is complete when the function returns the error

WM NO_MORE_DATA. The fetch function will return the attribute value as well in a buffer specified in the
call. If buffer_size iSNULL then the attribute value will not be returned. If buf f er _si ze is not large
enough to hold the attribute value then the function will return as much of the attribute value as can be fit
in the buffer. The proper length of the attribute value is availableinthe at t ri bute_I engt h field. The
application can comparethe at t ri but e_I engt h with the buf f er _si ze to determine if the full value was
returned.

WWTEr r Ret Type WWFet chWorkltemAttri bute (

i WMIPSessi onHandl e psessi on_handl e,
WMTPQuer yHandl e pquery_handl e,
WMTPAt t r Name pattri but e_nane,
WMTPI nt 32 pattribute_type,

WMTPI nt 32 pattribute_Il ength,
WMTPText pattribute_val ue,

WMTI nt 32 buf fer_size)

=}

=}

o
c
—

o
c
—

o
c
—

o
c
—

=}

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
action.
pquery_handl e Identification of the specific query handle returned by the
_ WM OpenWorkltemAttributesList query command.
pattribute name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length pointer to the length of the attribute value.
pattribute_val ue Pointer to a buffer area provided by the client application where the attribute
_ value will be placed.
buffer_size Size of the buffer.
ERROR RETURN VALUE
WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

Version 2.0 Page 75 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.13 WM CloseWorkltemAttributesList

NAME
WM CloseWorkltemAttributesList - Closes the query for work item attributes.
DESCRIPTION

WWTEr r Ret Type WMCl oseWor kit emAt t ri but esLi st ¢

in WMIPSessi onHandl e psessi on_handl e,
in WMIPQuer yHandl e pquery_handl e)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the

WM OpenWorkltemAttributesList query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0 Page 76 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.14 WM GetWorkltemAttributeValue

NAME

WM GetWorkltemAttributeValue - Returns the value, type and length of awork item attribute specified
by the pwor k_i t em i d parameter.

DESCRIPTION

This command will return the value of awork item attribute in the buffer specified in the call.

WMTEr r Ret Type WGt Wor ki t emAt t ri but eVal ue (

i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst I D pproc_i nst _id,
WMTPWor kit em D pwork_item i d,
WMTPAt t r Name pattri but e_nane,

WMTPI nt 32 pattribute_type,

out WMIPI nt 32 pattribute_l ength,

out WMIPText pattribute_val ue,

in WM nt32 buffer_size)

=}

51515

o
c
—

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this

action.
Pointer to a structure containing the unique process instance ID.
Pointer to a structure containing the unique work item ID.

pproc_inst_id
pwork_itemid

pattribute name Pointer to the name of the attribute.
pattribute_type Pointer to the type of the attribute.
pattribute_length Pointer to the length of the attribute value.

pattribute_val ue Pointer to a buffer area provided by the client application where the

attribute value will be placed.

buffer_size Size of the buffer to be filled.
ERROR RETURN VALUE
VWM SUCCESS

WM | NVALI D_SESSI ON_HANDLE
W | NVALI D_ATTRI BUTE
WW_| NSUFFI Ol ENT_BUFFER_SI ZE

Version 2.0 Page 77 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.6.15 WMAssignWorkltemAttribute

NAME
WM AssignWorkltemAttribute - Assign the proper attribute to awork item.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, to change an attribute or to change the value
of an attribute of awork item.

WMTEr r Ret Type WWASSI gnWor kit emAttri but e (

i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocl nst I D pproc_i nst _id,
WMTPWor kit em D pwork_item i d,
WMTPAt t r Name pattri but e_nane,

WMTI nt 32 attribute_type,

WMTI nt 32 attribute_l ength,
WMTPText pattribute_val ue)

51515151515

=}

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.

pwork_itemid Pointer to a structure containing the work item ID for which an attribute will be
added or changed.

pattribute_name Pointer to the name of the attribute.

attribute_type Type of the attribute.

attribute_length | ength of the attribute value.
pattribute value pointer to abuffer area provided by the client application where the attribute
value will be placed.

ERROR RETURN VALUE

WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE

WWM_| NVALI D_PROCESS_| NSTANCE
WM | NVALI D_WORKI TEM

W | NVALI D_ATTRI BUTE

WM ATTRI BUTE_ASSI GNVENT_FAI LED

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign Work Item Attributes
Event Code: WMAssignedWorkltemAttributes
Version 2.0 Page 78 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.7 WAPI Administration Functions

The set of administration functions provide the functionality needed to perform administration
and maintenance functions of aworkflow system. This set includes the minimal services
contemplated for this client application interface. The set includes functions to change state of
a set of process or activity instances, terminating and aborting process instances, and for
assigning attributes to a set of process and activity instances.

6.7.1 WM ChangePr ocess| nstancesState

NAME

WM ChangePr ocessl nstancesState - Change the state of the instances of the named process definition
that match the specified filter criterion.

DESCRIPTION

This command is defined to allow a set of process instances in the named process definition to move to a
specific new state.

Execution of this command will cause a set of process instances of the named process definition change
their state. If the filter pointer pproc_i nst _filter iISNULL, then the command is applied to all process
instances. Specific state names and their semantics are dependent upon the particular WFM Engine
implementation.

This call will be executed when a set of process instances of a process must have a new state, such as
suspended, disabled or enabled. Specific state names and semantics must be included in implementation
documentation.

Since this command operates on a set of process instances of a named process definition, it is expected to
be issued by a person having the authority to do so. The scope of this operation may be different
depending on the vendor's implementation.

WMTEr r Ret Type WWMChangePr ocessl nst ancesSt at e (
WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pproc_def _id,

n WMIPFilter pproc_inst_filter,
WMTPPr ocl nst State pproc_i nst_state)

51515

=}

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
Pproc_def_id Pointer to a structure containing a unique process definition 1D.
Ppr oc! nst_filter Pointer to a structure containing the filter information for this request.
Pproc_inst_state An 1D that indicates the process state that you want to change to.
ERROR RETURN VALUE

VWM SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON
WM | NVALI D_FI LTER

WM | NVALI D_STATE

VWM _TRANSI TI ON_NOT_ALLOWED

REQUIREMENTS

Each process instance must have a unique 1D within an administrative scope.
Each process definition must have a unique ID within an administrative scope.

Version 2.0 Page 79 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

RATIONALE FOR API

This API allows the possible intervention of a process administrator in arunning process. This might be
for the purpose of changing the process definition and having all subsequently created instances reflect the
new definition. It provides the capability of halting running process instances while changes in roles,
activities, etc. are put into effect. It alows instances to be stopped while problem determination can be
done on a malfunctioning process.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process / Subprocess Instance State
Event Code: WM ChangedProcessl nstanceState
Version 2.0 Page 80 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.7.2 WM ChangeActivityl nstancesState

NAME

WM ChangeActivityl nstancesState - Change the state of the activity instances of a particular name
associated to a process definition that match the specified filter criterion.

DESCRIPTION

This command directs a WFM Engine to change the state of the named activity for aset of activity
instances. It isassumed that a person who can change the state of the set of activity instances
corresponding to a process definition has special authorization to do so. If the implementation supports a
state such as suspended, and resumed or in-progress, then the functions for suspend and resume are
implemented as state change calls. If the filter pointer pact _i nst _filter iSNULL, then the command is
applied to al activity instances of the given activity definition.

WMTEr r Ret Type WWMChangeAct i vi tyl nst ancesSt at e (

i WMIPSessi onHandl e psessi on_handl e,

WMTPPr ocDef | D pproc_def _id,

WMTPActi vityl D pactivity_def_id,

WMTPFi | ter pact_inst_filter,

WMIPActi vitylnstState pactivity_inst_state)

151515

=}

Argument Name Description

psessi on_handl e Pointer to a structure containing information about the context for this action.
Pproc_def_id Pointer to a structure containing a unique process definition ID.
Pactivity_def_id Pointer to the activity definition ID.

pact_inst_filter Pointer to a structure containing the filter information for this request.

Pactivity_inst_state An|D that indicates the activity instance state that you want to change to.

ERROR RETURN VALUE

WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON
VM| NVALI D_ACTI VI TY_NAME

WM | NVALI D_FI LTER

WM | NVALI D_STATE

WWM_TRANSI TI ON_NOT_ALLOWED

REQUIREMENTS

Each process definition must have a unique ID within an administrative scope.
Each activity must have a unique ID within a process definition.

RATIONALE FOR API

A workflow participant may wish to modify the states of activity instances of a particular activity. Other
situations might involve the malfunctioning of an application associated with an activity. A process
containing the activity may be a frequently used one, and it might be issuing dumps each time it is
invoked. The use of this API would allow the calling of the application to be stopped while remedial
measures were taken.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Activity Instance State
Event Code: WM ChangedA ctivitylnstanceState
Version 2.0 Page 81 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.7.3 WM Ter minatePr ocessl nstances

NAME

WM TerminateProcessl nstances - Terminate the process instances of the named process definition that
match the specified filter criterion.

DESCRIPTION

This command provides the capability of terminating a set of process instances associated with a process
definition. Execution of this command will cause a set of process instances of the named process
definition to be terminated. If the filter pointer pproc_i nst _filter iISNULL, then the command is
applied to al process instances.

WWTEr r Ret Type VWMTer ni nat ePr ocessl nst ances (
in WMIPSessi onHandl e psessi on_handl e,
in WMIPProcDef| D pproc_def _id,
in WMIPFilter pproc_inst_filter)

=}

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
Pproc_def _id Pointer to a structure containing the process definition for which all process
_ _ instances are to be terminated.
Pproc_inst_filter Pointer to a structure containing the filter information for this request.
ERROR RETURN VALUE
WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON
WM | NVALI D_FI LTER

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process / Subprocess Instance State
Event Code: WM TerminatedProcesslnstance
Version 2.0 Page 82 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.7.4 WM AssignProcessl nstancesAttribute

NAME

WM AssignProcessl nstancesAttribute - Assign the proper attribute to a set of process instances within
a process definition that match the specific filter criterion.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, or to change an attribute or to change the
values of an attribute of a set of process instances within a named process definition.

This command changes the value of the attribute of a process instance. These attributes of process
instances are of the kind called Process Control or Process Relevant Data.

WMTEr r Ret Type VWWASSI gnProcessl nst ancesAttri bute
i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pproc_def _id,

WMIPFi | ter pproc_inst_filter,
WMTPALt t r Name pattri but e_nane,

WMTI nt 32 attribute_type,

WMTI nt 32 attribute_l ength,

WMTPText pattribute_val ue)

‘3‘3‘3‘3‘3‘3

=}

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.

pproc_def _id Pointer to a structure containing the process definition 1D for which the
attribute of all process instances will be changed.

pproc_inst_filter Pointer to a structure containing the filter information for this request.

ppattribute_name Pointer to the name of the attribute.

attribute_type Type of the attribute.

attribute_length Length of the attribute value.

pattribute_val ue Pointer to a buffer area provided by the client application where the

attribute value will be placed.

ERROR RETURN VALUE

WM _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON
WM | NVALI D_FI LTER

W | NVALI D_ATTRI BUTE

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign Process / Subprocess Instance Attributes
Event Code: WM AssignedProcessl nstanceAttributes
Version 2.0 Page 83 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.7.5 WMAssignActivityl nstancesAttribute

NAME

WM AssignActivityl nstancesAttribute - Assign the proper attribute to set of activity instances within a
process definition that match the specific filter criterion.

DESCRIPTION

This command tells the WFM Engine to assign an attribute, or to change an attribute or to change the
value of an attribute of a set of activity instances within a named process definition. These attributes of
activity instances are of the kind called Process Control or Process Relevant Data. If pact _i nst_filter
isNULL, then the function is applied to ALL accessible activity instances of the given activity definition.

WMTEr r Ret Type WMASSi gnActi vi tyl nstancesAttri bute (
i WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocDef | D pproc_def _id,

WMTPActi vityl D pactivity_def_id,
WMTPFi | ter pact_inst_filter,

WMTPAt t r Name pattri but e_nane,

WMTI nt 32 attribute_type,

WMTI nt 32 attribute_l ength,

WMTPText pattribute_val ue)

5151515151515

=}

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pproc_def _id Pointer to a structure containing the process definition ID. In the case that the

attribute will be changed for all activity instances that correspond to the
process definition. This parameter will be NULL otherwise.

pactivity def_id Pointer to a structure containing the activity definition identification for which
the attribute will be assigned.

pact_inst_filter Pointer to a structure containing the filter information for this request.

pattribute_name Pointer to the name of the attribute.

attribute_type Type of the attribute.

attribute_length Length of the attribute value.

pattribute_val ue Pointer to a buffer area provided by the client application where the

attribute value will be placed.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON
VM| NVALI D_ACTI VI TY_NAME

WM | NVALI D_FI LTER

WV | NVALI D_ATTRI BUTE

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Assign Activity Instance Attributes
Event Code: WMAssignedActivitylnstanceAttributes
Version 2.0 Page 84 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.7.6 WM AbortProcessl nstances

NAME

WM AbortProcessl nstances - Abort the set of process instances that correspond to the named process
definition, that match the specific filter criterion, regardless of its state.

DESCRIPTION

This command allows a set of process instances of a process definition to be aborted. All current
activities within these process instances will be stopped when possible. The instances will be terminated.
If pproc_inst_filter iISNULL, then the function will be applied to ALL accessible process instances.

WWTEr r Ret Type VWWADboOr t Processl nst ances (
in WMIPSessi onHandl e psessi on_handl e,
n WMIPProcDef| D pproc_def _id,

in WMIPFilter pproc_inst_filter)

Argument Name Description
psessi on_handl e Pointer to a structure containing information about the context for this action.
pproc_def _id Pointer to a structure containing the process definition for who all processes
_ _ instances is being aborted.
pproc_inst_filter Pointer to a structure containing the filter information for this request.
ERROR RETURN VALUE
WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_PROCESS_DEFI NI TI ON
WM | NVALI D_FI LTER

REQUIREMENTS
None
RATIONALE FOR API

This command is for use in catastrophic circumstances where nothing except clearing the process
away can be done.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process / Subprocess Instance State
Event Code: WM AbortedProcessl nstance
Version 2.0 Page 85 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.7.7 WM AbortProcessl nstance

NAME

WM AbortProcessl nstance - Abort the process instance specified regardless of its state.
DESCRIPTION

This command allows a process instance to be aborted. All current activities within the process
instance will be stopped when possible. The instance will be terminated.

WWTEr r Ret Type VWWADboOrt Processl nst ance (
in WMIPSessi onHandl e psessi on_handl e,
in WMIPProclnstlD pproc_inst_id)

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pproc_inst_id Pointer to a structure containing the process instance being aborted.
ERROR RETURN VALUE
WM_SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WW_| NVALI D_PROCESS_| NSTANCE

REQUIREMENTS
None

RATIONALE FOR API

This command is for use in catastrophic circumstances where nothing except clearing the process away
can be done.

AUDIT INFORMATION

The following audit information is directly related to this function and would be recorded by an
implementation of this specification that complies with the Audit Profile:

Audit Data Type: Change Process / Subprocess Instance State
Event Code: WM ADbortedProcesslnstance

6.8 WAPI Application Invocation Functions

The set of application interface functions provides services to Tool-Agents, to invoke and control
applications associated with specific work items.

The Invoked Application Interface defines an API set, which is highly recommended to be used by
Workflow System components (engine and client applications) to control specialized application drivers
called Tool Agents. These Tool Agents finally start up and stop applications, pass workflow and
application relevant information to and from the application and control the application’s run level status.
Therefore, the Invoked Application Interface WAPIs are only directed against a Tool Agent. Nevertheless,
additional workflow information could be requested by an application via the Tool Agent using standard
WAPI functions. As the Invoked Application Interface should handle bi-directional requests (requests to
and from applications), it depends on the interfaces and architecture of applications how to interact with
an Tool Agent.

Version 2.0 Page 86 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

This interface will allow the request and update of application data and more run-time relevant
functionalities.

Workflow enabled
applications

Workflow System

(Workflow Engine and/or
Worklist Handler

Interface 3 - API

Invoked applications

ifferent invokation technologr
Fig. 1: The localization of the Invoking Application Interface.

The Workflow System itself hasto know about the installed Tool Agents. The basic architecture of Tool
Agents could be compared with a driver - interface, i.e. ODBC, etc..

Within this interface definition, no further communication mechanism between the Tool Agents and the
Workflow System is necessary.

6.8.1 WMTAConnect() & WMTADisconnect()

DESCRIPTION

These commands create and terminate connections to Tool Agent interfaces. The commands are aready
defined in section “WAPI Connection Functions’. Applications might require login procedures, therefore
user authentication should be passed to a Tool Agent to provide single-login mechanisms.

Note: The value for engine_name in WM T Connectlnfo represents the name of the Tool Agent
implementation as defined in the process definition.

Version 2.0 Page 87 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.8.2 WMTAInvokeApplication()

NAME
WMTAInvokeApplication - Force a Tool Agent to start or activate a specific application.
DESCRIPTION

The workflow application or engine activates a specified application associated with awork item by
calling this Tool Agent API. Applications could be already active (started) or have to be invoked (started)
by the Tool Agent. Invoking an application always includes passing of additional options like application
parameters and modes.

i nt WMTAl nvokeApplication (

in int tool _agent_handl e,

in string application_naneg,

WMTPPr ocl nst I D pproc_i nst _id,
WMTPWor kit em D pwork_item i d,

WMTPAt tri but eLi st pattribute_list,

int app_node)

151515

=}

Argument Name Description
tool_agent_handle This handle represents one connection to a specific Tool Agent
application_name This parameter represents the name of the executable file or component. The

application name must be passed without the path name. (The Tool Agent
implemetation and configuration has to handle the local configuration.)

pproc_inst_id Process instance, to identify the relation between the application and a process
instance. ThisID allows the System to reference to a specific application handle of
the Tool Agent.

pwork_item_id Work Item associated with invoked application

pattribute list Pointer to alist of parameters and attributes which are required by the application.
These parameters could be either application relevant, or dynamic, or workflow
relevant data. (e.g. filename, record identifer, etc.)

app_mode Represents a possible application mode like “CREATE”, “UPDATE”", “READ-
ONLY”, "PRINT", etc..

ERROR RETURN VALUE

W _SUCCESS
WWM_APPLI CATI ON_NOT_STARTED
WWM_APPLI CATI ON_NOT_DEFI NED
WWM_APPLI CATI ON_BUSY

REQUIREMENTS
None

RATIONALE FOR API

This command invokes a specific application associated with awork item.A Tool Agent might control one
or multiple applications, which have to be started or activated. Also, an application haveto be started in a
specific mode like “open” or “update”.

AUDIT INFORMATION

None

Version 2.0 Page 88 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.8.3 WMTARequestAppStatus()

NAME

WMTARequestAppStatus - allows the Workflow System to check for open applications and their status
(running, pending, etc.).

DESCRIPTION

WMTARequestAppStatus() defines how the Workflow System has to check the status of an application
and retrieves workflow relevant data from the application. To retrieve workflow relevant data from an
invoked application, the workflow application or engine has to request the application status and
information from a Tool Agent. Due to some asynchronous requirements of integrated applications, Tool
Agents can request additional information by use of other WAPI interfaces.

int WMTARequest AppSt at us (
in WMTI nt 32 tool _agent _handl e,
in WMIPProclnstl D proc_inst_id,

n WMIPWorkltem D pwork_item.id,

ut WMl nt 32 app_st at us,

out WMIPAttri butelLi st WFRel evant Dat a)

o|—

Argument Name Description

tool_agent_handle This handle represents one specific Tool Agent

Pproc_inst_id Workflow relevant data belong to this process instance and should be updated after
the application is finished.

Pwork_item_id Work Item associated with invoked application.

app_status Information about the invoked application. (1.e. “RUNNING”, “ACTIVE",
“WAITING", “TERMINATED”, “FINISHED", etc.)

WFRelevantData A list or structure of workflow relevant data, which could be accessed by the Tool

Agent mechanisms.

ERROR RETURN VALUE

W _SUCCESS
WWM_APPLI CATI ON_BUSY

WMV | NVALI D_TOOL_AGENT_HANDLE
WM | NVALI D_WORKI TEM

WW_| NVALI D_PROCESS | NSTANCE

REQUIREMENTS
None

RATIONALE FOR API

To check the status of an active work item this command might be used to control the status of an invoked
application.

AUDIT INFORMATION

None

Version 2.0 Page 89 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

6.8.4 WMTATerminateApp()

NAME
WMTATerminateApp - Forces the Tool Agent to terminate an application.
DESCRIPTION

This API allows the Workflow System to stop an application, which relates to a specific process instance.
Also, an application can be terminated by any other event. Therefore, WM TerminateApp is not mandatory
within the application control APIs, but it allows the Tool Agent to free application relevant information.

int WMTATer mi nat eApp (
in WMTI nt 32 tool _agent _handl e,
in WMTPProcl nst | D pproc_inst_id,
in WMIPWrkltem D pwork_item.id)

Argument Name Description
tool_agent_handle This handle represents one specific Tool Agent
pproc_inst_id Workflow relevant data belong to this process instance and should be updated after

the application is finished.
pwork_item_id Work Item associated with invoked application.

ERROR RETURN VALUE

W _SUCCESS
WWM_APPLI CATI ON_NOT STOPPED
WMV | NVALI D_PROCESS | NSTANCE
WM | NVALI D_WORKI TEM
WWM_APPLI CATI ON_BUSY

REQUIREMENTS
None

RATIONALE FOR API

This command is to close a connection to an application and to stop it. It might be used before system
shutdown, or to terminate invoked applications to allow better control of system resources used by
integrated applications.

AUDIT INFORMATION

None

Version 2.0 Page 90 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Version 2.0 Page 91 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

7. Appendix A: Future Work

7.1 Additional API Areas

The WFM Coalition API specification work will address the following areas. It will be determined
whether API calls should be created for these areas or whether they are the sole domain of particular
WFM product implementations.

7.1.1 WFM Data API calls

The types of data that applications need to manipulate through this API specification are process control
data, process relevant data, and application data. The current specification addresses the access to these
data through the definition and manipulation of attributes of processes, activities and work items. It is
currently believed that some additional new API calls or parameter additions to existing API calls will be
required for complete data manipulation.

7.1.2 Ad hoc activities

In afuture release of API specifications, the APl working group will consider the functionality to allow
applications to add activities to an instance of a process that are not part of its definition. These ad-hoc
additions will be done on an instance basis.

7.1.3 Administration and M aintenance

The API working group believes that the functions in this area correspond to interface 5. Services should
include functions for:

Purging

Backup

Archiving

Download and Upload instances (for remote users)

7.1.4 Names and Roles

The API working group believes that a Workflow Engine should also provide services for definition,
assignment, mapping and maintenance of roles and names (identities). The working group also believes
that these services should be provided through interface 5 as well.

7.2 Additional Issues

The WFM Coalition API specification work will be expanded to take care of the following issues for
future releases.

7.2.1 Error reporting and control

All WAPI function calls have a uniform error return datatype. This datatype is shared among all API
calls. This specification assumes that the Coalition will specify a subset of the main error return codes,
leaving for vendor specific implementation the remaining main error return codes and the set of subcode
codes to provide extensibility and specialization of error codes. (See section WAPI Data Types, and WAPI
Error Return Codes sections).

7.2.2 Synchpoint processing

Version 2.0 Page 92 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Synchpoint processing deals with recoverability. The API working group believes that this areaiis
extremely important to WFM exploiters. However, it is also believed that it would be one of the more
difficult areas to deal with in terms of member agreement. Work in this areais being deferred to the
second release of the API specifications.

7.2.3 Security

The current version of the WFM API specification does not include any specific requirements or
provisions for security mechanisms, except for the inclusion of user password in the WM T Connectlnfo
structure. Implementation of security mechanisms are left up to the specific implementations.

7.2.4 Locking

The current version of the WFM API specification does not include any specific requirements or
provisions for locking mechanisms. Implementation of locking mechanisms are left up to the specific
implementations.

7.2.5 Process Integrity

The current version of the WFM API specification does not include any specific requirements or
provisions for mechanisms to guarantee process integrity. Implementation of process integrity
mechanisms are left up to the specific implementations.

Version 2.0 Page 93 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

8. Appendix B: Object Bindings

This chapter describes the object bindings for the WAPI functions described in this document®. Bindings
are defined for OLE and in terms of OMG IDL. Both bindings realize a common objet model that is
described in the next section; the rest of the chapter describes the binding specifications.

8.1 Abstract Object Definition

The following diagram shows the primary objects used in the definition of the Workflow Application
Client interface.

manages Workflow manages
Server
manages manages
realizes L comprises executes
Activi Process Process
Work Item ty —>

Instance Instance Definition

The WorkflowServer provides the context for communication with the Workflow Enactment Service. It
allows for filtered queries on objects owned by the specific Enactment Service. An executable workflow
model itself is represented by the ProcessDefinition ; the Process Definition serves as a Factory for
creating instances of the Workflow Model that are enacted by the Workflow Management System. To
execute a specific process, a Processl nstance of the ProcessDefinition is created. During execution of the
Processl nstance, the Enactment Service creates instances (Activityl nstance) of the Activity Definitions
contained in the Process Definition. Assignment of an activity instance to a participant creates a
WorklItem.

The next diagram shows the auxiliary constructs that are used to complete the Object Model.

! The new Process Definition functions are not covered here at the moment.

Version 2.0 Page 94 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

01-October-96

Process
Definition

Workflow Filter
Server
owns qualifies
contains Workflow contains
Object
Collection
contains ;
| contains
Activity Process
Work Item Instance Instance
has has
P Attribute [«
has has

A set of standardized Attributesis defined for each of the objects - attributes specific to a particular
Enactment Service or user-defined attributes that determine the specifics of a Workflow abject in a
particular Workflow Model. Accessto filtered lists of objects owned by the Enactment Service is managed
via Collection-type interfaces; Filter objects support definition of selection criteriafor those lists.
Workflow Object Collections are realized as OL E-Collections in the OLE binding; in the OMG IDL
binding an Iterator-type interface is defined for each of the fundamental Workflow Object interfaces.

8.1.1 Mapping WAPI tothe OLE and IDL Bindings

The following table describes how the ingredients of the Common Object Model described above map to
the WAPI constructs defined in this specification.

WAPI Element OLE Object IDL Interface
WMTSession Server ApplicationClientServer
WMTFilter Filter Filter
WMTQueryHandle OLE-Collection ProcessDefinitionsList
ProcessinstancesList
ActivitylnstancesList
WorkList
Attributelist

WM TProcessDefinition ProcessDefinition ProcessDefinition

WMTProcesslnstance

Processlnstance

Processlnstance

WMTActivitylnstance

Activitylnstance

Activitylnstance

WMTWorkltem Workltem Workltem
WMTAttributeName Attribute Attribute
WMTAttributeType

WMTATttributelength
WMTAttributeVaue

WMTEntity of type Process
Activity

Version 2.0

ActivityDefinition

Copyright © 1993, 1996, The Workflow Management Coalition

Page 95 of 178

Workflow Management Application Programming Interface (Interface 2) 01-October-96

WMTEntity of type Transition TransitionDefinition
Information

WMTEntity of type Application | ApplicationDefinition
Definition

WMTEntity of type Participant ParticipantDefinition
Definition

WMTEntity of type Process DataDefinition
Relevant Data

8.2 OLE Automation Binding

This appendix describes the OLE automation binding for the Workflow Management Coalition Interface 2
(WAPI2). It isbased on:

the WAPI specified in this document, and
Microsoft Visual Basic 4.0, Professional Features, Creating OLE Servers, Chapter 3, Sandards and
Guidelines

This binding has two goals:

1. Toaccurately reflect the functionality specified by WAPI2.
2. To conform to the standards and guidelines for OL E automation interfaces.

Note that this version of the binding does not yet include the “entitiy” functions.

8.2.1 Expressing WAPI2 asan OLE Automation Interface

WAPI2 is defined in terms of data structures and functions. An OLE automation interface consists of
object classes, each with properties and methods. The OLE automation binding for WAPI2 was derived
using the following rules:

1. Define an OLE automation object class for each WAPI2 data structure. However, if a WAPI2 data
structure consists of asingle WMTText field, use the OLE automation String class.

2. Define aread-only OLE automation property for each field in each WAPI2 data structure, on the
object class corresponding to the data structure.

3. For each WAPI2 function, define a method on the appropriate object class. Omit the session handle
parameter from the methods (except for the Server methods).

4. Use OLE automation collections for each Open/Fetch/Close...List combination of functions, and for
fields in data structures that hold multiple values (e.g. participants).

5. Errors are reported via exceptions.

8.2.1.1 Object Classes

The OLE automation binding defines an OL E automation object (class) for each WAPI2 data structure.
For example, WAPI2 defines a process instance data structure as follows:

Version 2.0 Page 96 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

typedef struct

/1 This is the mninumlist of elements at this time. Future versions to provide
extensibility for this structure.

WMT Text process_nane[NAME_STRI NG_SI ZE] ;
WMTPr ocl nst | D proc_inst_id;

WMTPr ocDef | D proc_def _id;

WMTPr ocl nst St at e state;

WMTI nt 32 priority;

WMT Text dat a_r ef er ence[DATA_REFERENCE_SI ZE] ;

/] private el enent containing vendor specific
information
WMTW | Parti ci pant proc_partici pants[20];
//up to 20 63 character long participant identifiers

} WMTProcl nst;

The OLE automation binding defines a Processl nstance object class with properites Name, ID,
ProcessDefinitionl D, State, Priority, DataReference, and Participants. This Processl nstance object class
defines Start and Terminate methods, corresponding to the WM StartProcess and

WM TerminateProcessl nstance WAPI 2 functions.

The table below lists the object classes in the WAPI2 OLE automation binding, and the corresponding
WAPI2 data structures. Note that there are exceptions to the rules stated above. Thereisno
ConnectionInfo object class - the information is passed as separate parameters to the Connect method of
the Server class. Thereisan Attribute object class - its properties are passed as separate parametersin the
WAPI2 attribute functions.

OLE Automation Object | WAPI 2 Data Type
Server WMTSessionHandle
WMTConnectinfo
Filter WMTFilter
Collection WMTQueryHandle
ProcessDefinition WMTProcDefID
Processlnstance WMTProclnst
Activitylnstance WMTActivitylnst
Workltem WMTWorkltem
Attribute
String WM TWf|Participant
WMTProcDefState
WMTProclnstState

The table below lists the entities in the Workflow Process Definition Language (WPDL), and the
corresponding WAPI2 OLE automation binding objects.

OLE Automation Object WPDL Entity

ProcessDefinition Workflow Process Definition
ActivityDefinition Workflow Process Activity
TransitionDefinition Transition Information
ParticipantDefinition Workflow Participant Definition
ApplicationDefinition Workflow Application Definition
DataDefinition Workflow Process Relevant Data

8.2.1.2 Object Hierarchy

The aobject classesin an OLE automation interface are organized into an object hierarchy. Thisisnot an
inheritance hierarchy based on “is &’ relationships. Rather, it is anavigational hierarchy that “organizes

Version 2.0 Page 97 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

the objects in away that makes programming easier”. Thetop level objectsin the hierarchy are
“externally creatable’, which means that a program can obtain such objects directly. All other objectsin
the OLE automation interface are obtained indirectly, through the properties and methods of the top level
objects. Hereisthe object hierarchy for the WAPI2 OLE automation interface:

Server

Process Definitions
States
ActivityDefinitions
TransitionDefinitions
ParticipantDefinitions
ApplicationDefinitions
ProcessDataDefinitions

Process Instances
Attributes
Participants
States

Activity Instances
Attributes
Participants
States

Work Items
Attributes
Participant

ParticipantDefinitions

ApplicationDefinitions

Filter

WAPI2 requires a program to first obtain a session handle, and then use it to get process, activity, and
work item handles. In the OLE automation binding, Serverand Filter are the top level objects. The Server
object class has methods for listing process definitions, process instances, activity instances, and work
items.

8.2.1.3 Caollections and Queries
WAPI2 supports several retrieval operations that return multiple values:

alist of process definitions, process instances, activity instance, or work items,
the states of a process definition, process instance, or activity instance
the attributes of a process instance, activity instance, or work item

For each such retrieval operation, WAPI2 defines three functions:

WMOpen...List
WMPFetch...
WMClose...List

The open functions take a filter parameter. The fetch functions are used to iterate through the values
retrieved.

OLE automation uses the Collection object class to navigate such one-to-many relationships in the object
hierarchy. The Server object class has list methods which take a Filter object as a parameter and return a
collection of ProcessDefinition, Processinstance, Activitylnstance, or Workltem objects. The

Version 2.0 Page 98 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

ProcessDefinition, Processlnstance, and Activitylnstance object classes have a States property whose value
is acollection of states. . The Processlnstance, Activitylnstance, and Workltem object classes have an
Attributes property whose value is a collection of attributes. These properties have a Filter parameter.

The Collection object class has a Count property (the number of elementsin the collection) and provides
methods for iterating through its elements. For example, here is the VBA code to populate a list box with
auser’swork items:

Di m mySessi on As Sessi on
Di m myWor kLi st As Filter
Di m myWor kl tem As Workltem

Set nySession = CreateQbject(“WAPI 2. Sessi on”)
mySessi on. Connect (...)

For Each myWorkltem In Session. Li st Worklt ens(myWor kLi st)
Li st Box. Addl t em myWor kl t em Nane
Next myWorkltem

The ProcessDefinition, Processl nstance, Activitylnstance, and Workltem classes each have collection-
valued properties for their states, attributes, and participants. The elements of the state and participant
collections are strings. The elements of the attribute collections are Attribute objects, which have two
properties: Name and Value. The Value property is expressed as an OLE automation Variant, which
provides methods for determining its data type and length.

8.2.1.4 Exceptions

OLE automation supports exceptions. OLE automation servers can report errors by raising an exception
rather than returning an error code. This allows chaining callsto an OLE automation interfacein asingle
expression. For example, the following expression

Wor kl t em Processl nst ance. ProcessDef i ni ti on. Nane

makes three calls to the OLE automation interface to return the name of the process definition for the
process instance that contains the work item. These expressions commonly appear in programs or macros
that call an OLE automation interface. Any one of the calls could encounter an error, which would be
reported to the calling program through an exception.

The OLE automation binding for WAPI2 uses exceptions to report errors. The exception object carries a
text description of the error with it. The Server object also has ErrorCode and ErrorSubCode properties.
When a program calls the WAPI2 OLE automation interface, and the server encounters an error, it sets
the Server properties to the error codes in the WMTErrRetType data structure, and raises an exception.

8.2.2 Attributes

Most workflow objects can have a collection of attributes, where each attribute has a name, data type, and
value. The WAPI C binding provides functions for

iterating through the attributes of an object: WMOpen...AttributesList,
WMPFetch...Attribute, WMClose...AttributesList, and

getting and setting attribute values: WM Get... AttributeValue, WMAssign... AttributeValue.

In the OLE binding, each object has an Attributes property whose value is a collection of Attribute objects.
The OLE collection object provides methods for iterating through the attributes of an object. An
Attribute object has name, type and value properties corresponding to the at t ri but e_nanre,
attribute_type, attribute_length, andattribute_val ue parametersto the
WMGet...AttributeValue function. The Attributes collection isindexed by attribute name. Getting the

Version 2.0 Page 99 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

value of an attribute object has the same effect as calling WMGet... AttributeValue; setting the value of an
attribute object has the same effect as calling WMAssign. .. AtributeValue. For example, the following
expression

activity.Attributes(“Size"). Value

evaluates to the value of the " Size” attribute of an activity object (referenced by the activity variable), and

activity.Attributes(“Size”).Value = 15

updates the “Size” attribute of an activity object. The data type of the VValue property isthe OLE
automation Variant type. This data type provides functions for determining the data type of its value, and
converting its value to a basic data type.

8.2.3 Server

The Server object class corresponds to the WM T SessionHandle data type. Server objects are externally
creatable. A program must successfully call the Connect method on a Server object before it can be used
to access other objects.

8.2.3.1 Properties
A Server object has the following properties:

Name Type Description

Engine String pconnect_info.engine name
ErrorCode Integer WMTErrRetTypemain _code
ErrorSubCode Integer WMTErrRetType.sub _code
Scope String pconnect_info.scope

These properties are read-only. They are set when the OLE automation interface raises an exception.

8.2.3.2 Methods
A Server object has the following methods:

Signature Description
Connect WM Connect
in String User
in String Password
ProcessDefinition CreateProcessDefinition | WM CreateProcessDefinition
DeleteProcessDefinition WM Del eteProcessDefinition
in ProcessDefinition ProcDef
Disconnect WM Disconnect
Collection ListProcessDefinitions WM OpenProcessDefinitionsList
in Filter ProcDefFilter
Collection ListProcesslnstances WM OpenProcessl nstancesL ist
in Filter ProclnstFilter
Process| nstance GetProcessl nstance WM GetProcessl nstance
in String ProclnstiD
Collection ListActivitylnstances WM OpenActivityl nstancesList
in Filter ActivitylnstFilter
Activitylnstance GetActivitylnstance WM GetActivitylnstance
in String ProclnstiD

Version 2.0 Page 100 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

in String ActivitylnstiD

Collection ListWorkltems WM OpenWorkltemsL ist
in Filter WorkltemFilter
Workltem GetWorkltem WM GetWorkltem

in String ProcinstiD
in String Worklteml D

ApplicationDefinition WM CreateEntity
CreateApplicationDefinition
in String Name

DeleteApplicationDefinition WM Del eteEntity
ParticipantDefinition WM CreateEntity
CreateParticipantDefinition

in Sting Name
Del eteParticipantDefinition WM Del eteEntity

8.2.3.3 Connect

01-October-96

This method is the binding for the WM Connect function. Note that the engine name and scope
parameters to the WM Connect function are omitted here. Thisinformation is encoded in the
parameters to the call to the OLE function (CreateObject or GetObject) which returns the server

object.
Connect (
in String User,
in String Password)
Argument Description (WM Connect Argument)
User pconnect _i nfo. user _identification
Passwor d pconnect_info.password

8.2.3.4 CreateProcessDefinition
This method is the binding for the WM Cr eatePr ocessDefinition function.

ProcessDefinition CreateProcessDefinition ()

Argument Description (WM CreatePr ocessl nstance Argument)

Processl nst ance pproc_def _id

8.2.3.5 DeleteProcessDefinition
This method is the binding for the WM DeleteDefinition function.

Del et eProcessDefinition (
in ProcessDefinition ProcDef)

Argument Description (WM DeletePr ocessDefinition Argument)
Pr ocDef pproc_def _id
Version 2.0

Copyright © 1993, 1996, The Workflow Management Coalition

Page 101 of 178

Workflow Management Application Programming Interface (Interface 2) 01-October-96

8.2.3.6 WMDisconnect
This method is the binding for the WM Disconnect function.

Di sconnect ()

8.2.3.7 ListProcessDefinitions
This method is the binding for the WM OpenProcessDefinitionsList function.

Col I ection ListProcessDefinitions (
in Filter ProcDefFilter)

Argument Description (WM OpenProcessDefinitionsList Argument)
Pr ocDef _Fi Iter pproc_def _filter
Col | ection pquery_handle

8.2.3.8 ListProcessl nstances
This method is the binding for the WM OpenPr ocessl nstancesL ist function.

Col I ection ListProcesslnstances (
in Filter ProclnstFilter)

Argument Description (WM OpenProcessl nstancesList Argument)
Procl nst Filter pproc_inst_filter
Col | ection pquery_handle

8.2.3.9 GetProcessl nstance
This method is the binding for the WM GetPr ocessl nstance function.

Processl nst ance Get Processl nst ance (
in String ProclnstlD)

Argument Description (WM GetPr ocessl nstance Argument)
Proclnst1D pproc_inst_id
Processl nst ance pproc_inst

8.2.3.10 ListActivitylnstances
This method is the binding for the WM OpenActivityl nstancesL ist function.

Col I ection ListProcesslnstances (
in Filter ActivitylnstFilter)

Argument Description (WM ActivitylnstancesList Argument)
Activit_ylnstFiIter pactivity_inst_filter
Col | ection pquery_handle

8.2.3.11 GetActivityl nstance
This method is the binding for the WM GetActivityl nstance function.

Activitylnstance Get Activityl nstance (
in String ProclnstlD,

Version 2.0 Page 102 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

in String ActivitylnstlD)

Argument Description (WM GetActivityl nstance Argument)
Proclnst1D pproc_inst_id

ActivitylnstID pactivity_inst_id

Activitylnstance pactivity inst

8.2.3.12 ListWorkltems
This method is the binding for the WM OpenWorkL st function.

Col l ection ListWrkltens (
in Filter WorkListFilter)

Argument Description (WM OpenWorkList Argument)
W)rkLis_tFiIter pworklist_filter
Col | ection pquery_handle

8.2.3.13 GetWorkltem
This method is the binding for the WM GetW or kltem function.

Workltem Get Worklt em (
in String ProclnstlD,

in String Wrkltem D)

Argument Description (WM GetWorkltem Argument)
Proclnst1D pproc_inst_id

Workl tem D pwork_itemid

Vorkitem pwork_item

8.2.3.14 CreateApplicationDefinition

This method is the binding for the WM Cr eateEntity function, when used to create a workflow
application definition outside of any process definition.

ApplicationDefinition CreateParticipantDefinition ()

Argument Description (WM Cr eateEntity Argument)
Nane entity_nane

ApplicationDefinit Entity

ion

8.2.3.15 DeleteApplicationDefinition

This method is the binding for the WM DeleteEntity function, when used to delete a workflow application
definition that is not part of a process definition.

Del et eApplicationDefinition (
in ApplicationDefinition AppDef)

Argument Description (WM DeleteEntity Argument)
AppDef entity_id
Version 2.0 Page 103 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

8.2.3.16 CreateParticipantDefinition

This method is the binding for the WM Cr eateEntity function, when used to create a workflow
participant definition outside of any process definition.

ParticipantDefinition CreateParticipantDefinition ()

Argument Description (WM Cr eateEntity Argument)

Nane entity_nane
Partici pant Definit Entity
ion

8.2.3.17 DeleteParticipantDefinition

This method is the binding for the WM DeleteEntity function, when used to delete a workflow participant
definition that is not part of a process definition.

Del etePartici pantDefinition (
in ParticipantDefinition PartDef)

Argument Description (WM DeleteEntity Argument)
Par t Def entity_id
8.2.4 Filter

The filter object class corresponds to the WMTFilter datatype. Filter objects are externally creatable.

8.2.4.1 Properties
Filter objects have the following properties:

Name Type Description

Type Integer WMTFilter filter_type
Length Integer WMTFilter filter length
AttributeName String WM TFilter.attribute name
Comparison Integer WM TFilter.comparison
FilterString String WMTFilter filter_string

8.2.4.2 Methods
There are no methods for Filter objects.
8.2.5 Process Definition

The process definition class corresponds to the WMTProcDefID datatype. Process definition objects are
not externally creatable. They are returned by the Server object’s ListProcessDefinitions method, and by
the ProcessDefinition property of a Processl nstance object.

8.2.5.1 Properites
A ProcessDefinition object has the following read-only properties:

Name Type Description

Activities Collection WPDL <Activity List>

Applications Collection WPDL <Workflow Application List>

Data Collection WPDL <Workflow Process Relevant Data

Version 2.0 Page 104 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

List>
ID String WMTProcDefld.proc_def id
Name String WPDL <process hame>
Participants Collection WPDL <Workflow Participant List>
States Collection WM OpenProcessDefinitionStatesL ist
Transitions Collection WPDL <Transition Information List>

01-October-96

All of these properties, except name, are read-only. The States property takes a Filter parameter.

8.2.5.2 Methods

A ProcessDefinition object has the following methods:

Signature Description
Process| nstance Createl nstance WM CreateProcess| nstance
Changel nstancesState WM ChangeProcessl nstancesState

in Filter InstanceFilter
in String InstanceState

ChangeActivitylnstancesState
in String ActivityDefinitionl D
in Filter InstanceFilter
in String InstanceState

WM ChangeA ctivityl nstancesState

Terminatel nstances
in Filter InstanceFilter

WM TerminateProcessl nstances

AssigninstancesAttribute
in Filter InstanceFilter
in String Name
in Variant Value

WM A ssignProcessl nstancesAttribute

AssignActivitylnstancesAttribute
in String Activitylnstancel D
in Filter InstanceFilter
in String Name
in String Value

WMASssignActivitylnstancesAttribute

Abortlnstances
in Filter InstanceFilter

WM AbortProcessl nstances

ActivityDefinition AddActivity WMAddEntity
in String Name

ApplicationDefinition AddApplication WMAddEntity
in String Name

ParticipantDefinition AddParticipant WMAddEntity
in String Name

ProcessDataDefinition AddData WMAddEntity
in String Name

TransitionDefinition AddTransition WMAddEntity

in String Name

Note that the Server parameters to these methods isimplicit. They use the server from which the process

definition was obtained.

8.2.5.3 Createl nstance

This method is the binding for the WM Cr eatePr ocessl nstance function.

Version 2.0

Copyright © 1993, 1996, The Workflow Management Coalition

Page 105 of 178

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Processl nstance Createl nstance ()

Argument Description (WM CreatePr ocessl nstance Argument)

Processl nst ance pproc_inst_id

8.2.5.4 Changel nstancesState
This method is the binding for the WM ChangePr ocessl nstancesState function.

Changel nst ancesSt at e (
in Filter InstanceFilter,
in String InstanceState)

Argument Description (WM ChangePr ocessl nstancesState Argument)
I nstanceFil ter pproc_inst_filter
I nstanceSt at e process_inst_state

8.2.5.5 ChangeActivityl nstancesState
This method is the binding for the WM ChangeActivityl nstancesState function.

ChangeActi vityl nstancesState (

in String ActivityDeflD,
in Filter InstanceFilter,
n String InstanceState)

=}

Argument Description (WM ChangeActivityl nstancesState Argument)
ActivityDefl D pactivity_def_id

I nstanceFil ter pact _inst_filter

I nstanceSt at e activity_inst_state

8.2.5.6 Terminatel nstances
This method is the binding for the WM T er minatePr ocessl nstances function.

Ter m nat el nst ances (
in Filter InstanceFilter)

Argument Description (WM Ter minatePr ocessl nstances Argument)

I nstanceFil ter pproc_inst_filter

8.2.5.7 AssignlnstancesAttribute
This method is the binding for the WM AssignPr ocess nstancesAttribute function.

Assi gnl nstancesAttribute (
in Filter InstanceFilter,

n String Nanme,

n Variant Val ue)

Argument Description (WM AssignProcessl nstancesAttribute Argument)
I nstanceFil ter pact _inst_filter

Nane attri bute_nane

Val ue pattribute_val ue

8.2.5.8 AssignActivityl nstancesAttribute
This method is the binding for the WM AssignActivityl nstancesAttribute function.

Version 2.0 Page 106 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Assi gnActivitylnstancesAttribute (
in String ActivityDeflD,
i Filter InstanceFilter,

String Name,

Variant Val ue)

=}

=}

=}

Argument Description (WM AssignActivityl nstancesAttribute Argument)
ActivityDefl D pactivity_def_id

I nstanceFil ter pact _inst_filter

Nane attri bute_nane

Val ue pattribute_val ue

8.2.5.9 Abortlnstances
This method is the binding for the WM Abor tPr ocess! nstances function.

Abort | nstances (
in Filter InstanceFilter)

Argument Description (WM AbortProcessl nstances Argument)

I nstanceFil ter pproc_inst_filter

8.2.5.10 AddActivity

This method is the binding for the WM AddEntity function, when used to add an activity
definition to a process definition.

ActivityDefinition AddActivity (
in String Nane)

Argument Description (WM AddEntity Argument)

Nane entity_nane
ActivityDefinition entity
8.2.5.11 AddApplication

This method is the binding for the WM AddEntity function, when used to add an application
definition to a process definition.

ApplicationDefinition AddApplication (
in String Nane)

Argument Description (WM AddEntity Argument)
Nane entity_nane

ApplicationDefinit entity

ion

8.2.5.12 AddData

This method is the binding for the WM AddEntity function, when used to add process relevant
datato a process definition.

ProcessDat aDef i niti on AddDat a (
in String Nane)

Argument Description (WM AddEntity Argument)

Version 2.0 Page 107 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Nane entity_nane
ProcessDat aDefi ni t entity
ion

8.2.5.13 AddParticipant

This method is the binding for the WM AddEntity function, when used to add a participant to a
process definition.

Partici pant Definition AddParti ci pant (
in String Nane)

Argument Description (WM AddEntity Argument)
Nane entity_nane

Parti ci pant Definit entity

ion

8.2.5.14 AddTransition

This method is the binding for the WM AddEntity function, when used to add transition
information to a process definition.

TransitionDefinition AddTransition (
in String Nane)

Argument Description (WM AddEntity Argument)
Nane entity_nane
TransitionDefiniti entity

on

8.2.6 Process Instance

The Processl nstance object class corresponds to the WM TProcessinst data type. Process instance objects
are not externally creatable. They are returned by the Server object’ s ListProcessl nstances method, and by
the Processl nstance property of an Activitylnstance or Workltem object.

8.2.6.1 Properties
A Processl nstance object has the following read-only properties:

Name Type Description

Attributes Collection WM OpenProcess nstanceAttributesl ist
DataReference String WMTProcessInst.data reference
ID String WMTProcessinst.proc inst_id
Name String WM TProcesslnst.process name
Participants Collection WM TProcesslnst.proc_participants
Priority Integer WM TProcessInst.priority
ProcessDefinition ProcessDefinition | WM GetProcessDefinition
ProcessDefinitionID | String WM TProcessinst.proc_def_id
State String WM TProcessInst.state

States Collection WM OpenProcessl nstanceStatesL i st

All of these properties are read-only, except for the State property. Updating this property has the same
effect as calling the ChangeState method. The Attributes and States properties take a Filter parameter.
The ProcessDefinition property is a convenience. It calls the GetProcessDefinition method on the session
from which the process instance was obtained, passing the ProcessDefinitionI D property value.

Version 2.0 Page 108 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

8.2.6.2 Methods
A Processl nstance object has the following methods:

Signature Description

Processlnstance Start WM StartProcess

Terminate WM TerminateProcess

ChangeState WM ChangeProcessl nstanceState
in String State

AssignAttribute WM A ssignProcessl nstanceAttribute
in String Name
in Variant Value

Abort WM AbortProcesslnstance

Note that the Server parameters to these methods isimplicit. They use the server from which the process
instance was obtained.

8.2.6.3 Start
This method is the binding for the WM StartPr ocess function.

Processl nstance Start ()

Argument Description (WM Star tProcess Argument)

Processl nst ance pnew_proc_inst_id

8.2.6.4 Terminate
This method is the binding for the WM T er minatePr ocessl nstance function.

Term nate ()

8.2.6.5 ChangeState
This method is the binding for the WM ChangePr ocessl nstanceState function.

ChangeSt at e (
in String State)

Argument Description (WM ChangePr ocessl nstanceState Argument)

State pproc_inst_state

8.2.6.6 AssignAttribute
This method is the binding for the WM AssignPr ocessl nstanceAttribute function.

AssignAttribute (
in String Nane,
in Variant Value)

Argument Description (WM AssignProcessl nstanceAttribute Argument)

Nane attri bute_nane

Val ue pattribute_val ue

Version 2.0 Page 109 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

8.2.6.7 Abort
This method is the binding for the WM Abor tPr ocessl nstance function.

Abort ()

8.2.7 Activity Definition

The ActivityDefinition class corresponds to the Workflow Process Activity entity in WPDL. Activity
definition objects are not externally creatable. They are returned in the Activities property of a
ProcessDefinition object.

8.2.7.1 Properties
An ActivityDefinition object has the following properties:

Name Type Description
Attributes Collection WM OpenEntityAttributesList
ID String WPDL <activity id>
Implementation | ApplicationDefti | WPDL <implementation>
ntion
ProcessDefintion
Name String WPDL <name>

8.2.8 Activity Instance

The Activitylnstance class corresponds to the WM TAcctivitylnst data type. Activity instance objects are not
externally creatable. They are returned by the Server object’s ListActivitylnstances method, and by the
Activitylnstance property of a Workltem object.

8.2.8.1 Properties
An Activitylnstance object has the following properties:

Name Type Description

Attributes Collection WM OpenActivitylnstanceAttributesL ist
DataReference String WMTActivitylnst.data reference
ID String WMTActivitylnst.activity inst_id
Name String WMTActivitylnst.activity name
Participants Collection WMTActivitylnst.proc_participants
Priority Integer WMTActivitylnstance.priority
ProcessInstance ProcessInstance WM GetProcess nstance
ProcessinstancelD | String WMTActivitylnstance.proc inst_id
State String WMTActivityl nstance.state

States Collection WM OpenActivityl nstanceStatesl ist

All of these properties are read-only, except for the State property. Updating this property has the same
effect as calling the ChangeState method. The Attributes and States properties take a Filter parameter.
The Processlnstance property is a convenience. It calls the GetProcessl nstance method on the server from
which the activity instance was obtained, passing the Processlnstancel D property value.

8.2.8.2 Methods
An Activitylnstance object has the following methods:

Version 2.0 Page 110 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Signature Description

ChangeState WM ChangeA ctivitylnstanceState
in String State

AssignAttribute WMASssignActivitylnstanceAttribute
in String Name
in Variant Value

Note that the Server parameters to these methods isimplicit. They use the server from which the activity
instance was obtained.

8.2.8.3 ChangeState
This method is the binding for the WM ChangeAdctivityl nstanceState function.

ChangeSt at e (
in String State)

Argument Description (WM ChangeActivityl nstanceState Argument)

State pactivity_inst_state

8.2.8.4 AssignAttribute
This method is the binding for the WM AssignActivityl nstanceAttribute function.

AssignAttribute (
in String Nane,
in Variant Value)

Argument Description (WM AssignActivityl nstanceAttribute Argument)
Nane attri bute_nane

Val ue pattribute_val ue

8.2.9 Workltem

The Workltem class corresponds to the WM TWorkltem data type. Work item objects are not externally
creatable. They are returned by the Server object’s ListWorkltem method..

8.2.9.1 Properties
A Workltem object has the following properties:

Name Type Description

Activitylnstance Activitylnstance | WMGetActivitylnstance
ActivitylnstancelD | String WMTWorkltem.activity inst
Attributes Collection WM OpenWorkltemAttributesL ist
DataReference String WMTWorkltem.data reference
ID String WMTWorkltem.workitem id
Name String WMTWorkltem.workitem name
Participant String WMTWorkltem.proc_participant
Priority Integer WM TWorkltemance.priority
ProcessInstance ProcessInstance WM GetProcess| nstance
ProcessinstancelD | String WM TWorkltemance.proc inst_id

All of these properties are read-only. The Attributes property takes a Filter parameter. The
Activitylnstance and Process| nstance properties are a convenience. They call the GetProcessl nstance and

Version 2.0 Page 111 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96
GetActivitylnstance methods, respectiively, on the server from which the work item was obtained,

passing the Processlnstancel D or Activitylnstancel D property value.

8.2.9.2 Methods
A Workltem object has the following methods:

Signature Description

AssignAttribute WMASssignWorkltemAttribute
in String Name
in Variant Value

Complete WM CompleteWorkltem
Reassign WM ReassignWorkltem

in String SourceUser
in String TargetUser

Note that the Server parameters to these methods is implicit. They use the server from which the work
item was obtained.

8.2.9.3 AssignAttribute
This method is the binding for the WM AssignWor kltemAttribute function.

AssignAttribute (
in String Nane,
in Variant Value)

Argument Description (WM AssignWor kltemAttribute Argument)
Nane attri bute_nane
Val ue pattribute_val ue

8.2.9.4 Complete
This method is the binding for the WM CompleteWor kltem function.

Conpl ete ()
8.2.9.5 Reassign
This method is the binding for the WM RessignWor kltem function.
Reassi gn (
in String SourceUser,
in String TargetUser)
Argument Description (WM ReassignWor kltem Argument)
Sour ceUser psour ce_user
Tar get User pt ar get _user

8.2.10 Transition Definition

The TransitionDefinition class corresponds to the Transition Information entity in WPDL. Transition
definition objects are not externally creatable. They are returned in the Transitions property of a
ProcessDefinition object.

Version 2.0 Page 112 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

8.2.10.1 Properties
A TransitionDefinition object has the following properties:

Name Type Description

Attributes Collection WM OpenEntityAttributesL ist
From ActivityDefinition | WPDL <trans from>

ID String WPDL <transition id>

Name String WPDL <name>

To ActivityDefinition | WPDL <transto>

8.2.11 Participant Definition

The ParticipantDefinition class corresponds to the Workflow Participant Definition entity in WPDL.
Participant definition objects are not externally creatable. They are returned by the
ListParticipantDefinitions method of a Server object, or in the Participants property of a
ProcessDefinition object.

8.2.11.1 Properties
A ParticipantDefinition object has the following properties:

Name Type Description

Attributes Collection WM OpenEntityAttributesL ist
ID String WPDL <participant id>
Name String WPDL <name>

Type Integer WPDL <participant type>

8.2.12 Application Definition

The ApplicationDefinition class corresponds to the Workflow Application Definition entity in WPDL.
Application definition objects are not externally creatable. They are returned by the
ListApplicationDefinitions method of a Server object, or in the Applications property of a
ProcessDefinition object.

8.2.12.1 Properties
An ApplicationDefinition object has the following properties:

Name Type Description

Attributes Collection WM OpenEntityAttributesL ist
ID String

Name String WPDL <tool name>

8.2.13 Process Data Definition

The ProcessDataDefinition class corresponds to the Workflow Process Relevant Data entity in WPDL.
Process data definition objects are not externally creatable. They are returned in the Data property of a
ProcessDefinition object.

8.2.13.1 Properties
A ProcessDataDefinition object has the following properties:

Version 2.0 Page 113 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

Name Type Description

Attributes Collection WM OpenEntityAttributesL ist
ID String WPDL <dataid>

Name String WPDL <name>

Type Integer WPDL <datatype>

8.2.14 Attribute

The Attribute object class corresponds the a single attribute of aworkflow object. . Attribute objects are
not externally creatable. They are returned in the Attributes property of aworkflow object, which isa
collection of attribute objects indexed by name.

8.2.14.1 Properties
An Attribute object has the following properties:

01-October-96

Name Type WM Fetch...Attribute Parameter
DataType Integer attribute type

Name String attribute_name

Value Variant pattribute value

The name and data type properties are read-only Updating the value of an attribute has the same effect as
calling WMAssign... AttributeValue on the object from which the attribute was obtai ned.

8.3 OMG IDL Binding

This chapter provides a detailed description of the Workflow Facility Client Application componentsin
terms of OMG IDL. The specification is split into three modules, the first one providing generic interfaces
and operations, the others defining the specific interfaces and functions for the Application Client
Interface and the Process Definition Interface.

8.3.1 The Workflow Facility Base Module

The Workflow Facility Base module contains definitions common to all of the various interfaces described

in the Workflow Reference Model.

The interfaces defined by this module are:

- Attribute interface, which provides access to attributes of various types of workflow objects.
AttributeList interface, which provides operations to handle filtered lists of Attributes.
Filter interface, which is used to define queries for workflow objects issued agaist the Workflow
Enactment Service who owns these objects.
Wor kflowObject interface, which defines generic operations and attributes common to many workflow
objects

The following abbreviated IDL summarizes the interfaces contained in the CFWFBase module.

Version 2.0 Page 114 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

modul e Cf Wor kfl owFaci | ityBase {
. I/ data type and general exception definitions
interface Filter {

. Il query filter object definitions
H

interface Attribute {
. I/ workflow object attribute definitions

interface Attributelist {
. I/ workflow object attribute list definitions
H

interface Workfl owObj ect {
. Il workfl ow object definitions
H

H
The following sections describe the contents of the CfWFBase module in detail.

8.3.1.1 Data Types and General Exceptions

The following data types and exceptions are defined in the CfWFBase module and are used in various
interfaces of the Workflow Facility.

/1 TYPE DEFI NI TI ONS

typedef string WMTNarre;
typedef WMINane WMTSt at e;
typedef sequence<WMISt at e> WMTSt at es;
typedef string WM d;
typedef integer WMTEr r or Code

/1 EXCEPTI ON DEFI NI TI ONS
exception InvalidFilter (WMIErrorCode badFilter);

exception NoMoreDat a () ;

exception InvalidState();

exception TransitionNotAl |l owed();

exception AttributeAsignnment Fail ed();

exception InvalidAttribute();

Each workflow object has a name and a state. WM TName and WMT State define the types to specifiy the
corresponding attributes. In addition, the WM TName type is used to define any kind of name-like
attribute, e.g., to specifiy named references to objects outside the scope of the Workflow Facility
specification. WMTStates handles alist of states. The WMTId type is used for identification of persistent
object references. The WM TErrorCode type is used to provide additional information with some
Exceptions, e.g., the InvalidFilter exception uses the Error Code to indicate the specific problem with the
Filter.

The InvalidFilter and NoMoreData exceptions are related to processing of filtered queries and query result
lists. InvalidState and TransitionNotAllowed exceptions are raised by state-changing operations on
workflow objects.

8.3.1.2 Filter Interface
The Filter interface is used to specify the filter criteriafor a query against the set of abjects of a specific
type.

interface Filter {
attribute I ong filterType;
attribute I ong filterLength;
attribute WMIName attribut eNane;
attribute integer conpari son;
attribute string filterString;
Version 2.0 Page 115 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

8.3.1.3 Attribute Interfaces

The Attribute interface is used to access attributes of workflow objects. Attribute data are accessed by
value; the attributeValue is of type any and is further specified by attributeType.
There are basically three types of attributes of a workflow object that can be accessed via this interface:
- The standard attributes described in this document (e.g., Name)
Vendor specific attributes associated with a particular object type (e.g., ' ProcessClass’ attribute of a
ProcessDefinition)
User defined attributes associated with particular object instances (e.g., ‘ CustomerNumber’ attribute
of aparticular Process| nstance)

interface Attribute {
attribute WMIName attribut eName;
attribute string attri buteType;
attribute I ong attri butelLength;
attribute any attri buteVval ue;

H

typedef sequence<Attri bute> Attributes;

The AttributeList interface provides iterator operations for handling of alist of Attributes; the
corresponding factory operation for this interface can be found in an workflow object interface. The
fetchAttribute operation gets the next Attribute from the list, the fetchAttributes operation gets the next
howMany Attributes from the list; if the list is empty, the NoMoreData exception is raised.

interface Attributelist {
Attribute fetchAttribute()
rai ses (NoMbreData);

Attributes fetchAttributes(long howhany)
rai ses (NoMbreData);

8.3.1.4 Workflow Object I nterface

The Workflow Object interface defines the attributes and operations common to most workflow objects.
Each WorkflowObject has a Name, a State and a set of Attributes associated with it.

A list of valid states for a particular WorkflowObject can be obtained using the listValidStates operation;
the InvalidState exception is raised when a state change to an unknown state is requested. getState obtains
the current State of a workflow object and setState changes the State; the TransitionNotAllowed exception
is raised when the transition from the current state to the new state is not allowed.

OpenAttributesList is the factory operation for an AttributeList, allowing for a query for attributes;
getAttributeV alue supports access to attributes by name. The AssignAttribute(s) operations assign new
valuesto Attributes. The InvalidAttribute exception is raised on requests for attributes not defined for the
workflow object; tha AttributeAssignmentFailed exception is raised when the Attribute could not be
modified, e.g., is read-only.

interface Wrkfl owObj ect {

attribute WMIName nane;
attribute WMII d id;
void listValidStates (
in Filter filter,
in bool ean count Fl ag,
out WMISt ates states,
out |ong count);
voi d changeState (in WMIState newsSt at e)

rai ses (TransitionNotAllowed, InvalidState);

Version 2.0 Page 116 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

void getState (out WMIState currentState);
voi d openAttributeList (
in Filter filter,
in bool ean count Fl ag,
out Attributelist attributes,
out |ong count)

raises (lnvalidFilter);

voi d getAttributeVal ue (
in WMINane nane
out Attribute attribute)
rai ses (lnvalidAttribute);

voi d assignAttribute (in Attribute attribute)
raises (lnvalidAttribute, AttributeAssignmentFail ed);

voi d assignAttributes (in Attributes attributes)
raises (lnvalidAttribute, AttributeAssignmentFail ed);

}

8.3.2 Workflow Application Client Server Interface

The Workflow ApplicationClientServer interface handles the connection of a particular workflow user to
an Enactment Service and provides access oto the workflow objects accessible through this Enactment
Service.

The connect operation initializes the ApplicationClientServer; the context of the connection is defined by
the engineName and the scope. The ConnectFailed excpetion is raised when a connection could not be
established. The disconnect operation serves as a destructor for the ApplicationClientServer.

Access to the workflow objects accessible through the connection is supported by providing factory
methods for interfaces managing access to lists of workflow objects: the Open...sList operation take afilter
astheir first argument (see the CFWFBase module descritpion for details), the countFlag parameter
indicates whether the number of elements in the query result should be returned. A NotConnected
exception is raised when no connection was established. The query results are bound to a connection and
are invalidated when the connection is terminated.

Operations are provided to get a Processlnstance, Activitylnstance or Workltem object viaits identifier.

interface ApplicationCientServer {

attribute CfWBase :: WJTNane engi neNane;
attribute CfWBase :: WVTNane scope;

voi d connect (
in CfWFBase :: WMINane userld,
in string passwor d)
rai ses (Connect Fail ed);

voi d disconnect()
rai ses (Not Connect ed);

ProcessDefi nitionLi st openProcessDefinitionsLi st (
in CfWBase :: Filter filter,
in bool ean count Fl ag)

raises (lnvalidFilter, NotConnected);

Processl nstanceli st openProcessl nstancesLi st (
in CfWBase :: Filter filter,
in bool ean count Fl ag)

raises (lnvalidFilter, NotConnected);

Activitylnstanceli st openActi vityl nstancesLi st (
in CfWBase :: Filter filter,
in bool ean count Fl ag)

raises (lnvalidFilter, NotConnected);

Wor kLi st openWbr kLi st (
in CfWFBase :: Filter filter,

Version 2.0 Page 117 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

01-October-96

in bool ean count Fl ag)
raises (lnvalidFilter, NotConnected);

Processl nstance get Processl nstance(
in CfWBase :: WMIld processl nst ancel d)
raises (lnvalidld);

Activitylnstance getActivitylnstance(
in CfWBase :: WMIld processl nst ancel d,
in CfWBase :: WMIld activitylnstancel d)
raises (lnvalidld);

Wor ki t em get Wor ki t enq
in CfWBase :: WMIld processl nst ancel d,
in CfWBase :: WMIld wor kil t eml d)
raises (lnvalidld);

8.3.2.1 Process Definition I nterface

The Process Definition interface provides factory operation for Process Instances and supports Process
Management operations on workflow objects related to the Process Definition: change of State and change
of a specific Attribute’ s value for all members of afiltered set of Process Instances and Activity Instances.

The ProcessDefinition interface inherits attributes and operations from WorkflowObject.

interface ProcessDefinition : CfWBase :: Workfl owObject {

Processl nstance createProcessl nstance (
in CfWBase :: WMINane i nst anceNane)
rai ses (Not Connect ed);

voi d changeProcessl nstancesState (
in CfWBase :: Filter filter,
in CfWBase :: WMIState newsSt at e)
rai ses (Not Connected, TransitionNotAl |l owed
InvalidState);

voi d abortProcessl nstances (
in CfWBase :: Filter filter)
rai ses (Not Connected, TransitionNotAl Il owed);

voi d terni nateProcessl nstances (
in CfWBase :: Filter filter)
rai ses (Not Connected, TransitionNotAl Il owed);

voi d assi gnProcesslnstancesAttribute (
in CfWBase :: Filter filter,
in CfWBase :: Attribute attribute)
rai ses (Not Connected, InvalidFilter, InvalidAttribute,
Attribut eAssi gnnment Fai | ed) ;

voi d changeActivitylnstancesState (
in CfWBase :: Filter filter,
in CfWBase :: WMIState newsSt at e)

InvalidState);

voi d assignActivitylnstancesAttribute (
in CfWBase :: Filter filter,
in CfWBase :: Attribute attribute)
rai ses (Not Connected, InvalidFilter, InvalidAttribute,
Attribut eAssi gnnment Fai | ed) ;

rai ses (Not Connected, InvalidFilter, TransitionNotAll owed,

8.3.2.2 Process I nstance I nterface

The ProcessInstance interface provides operations to access and modify the state and the attributes of a

Process Instance object.

Version 2.0
Copyright © 1993, 1996, The Workflow Management Coalition

Page 118 of 178

Workflow Management Application Programming Interface (Interface 2) 01-October-96

State changes can be performed using the start, terminate or abort operations. Additional state transitions
may be supported by an EnactmentService(see the WorkflowObject :: changeState() operation described
above). The getParentProcessDefinition operation returns the ProcessDefinition object that was used to
create the specific Processlnstance. The listAssignedParticipants operation provides the list of workflow
Participants associated to the Process Instance. The Processlnstance interface inherits attributes and
operations from WorkflowObject. All operations require an active connection to the Enactment Service.

interface Processlnstance : CfWBase :: Workfl ow(bj ect{
attribute Cf WFBase :: WMIDat aRef dat aRef er ence;
attribute I ong priority;

ProcessDefinition getParent ProcessDefinition ();

void start ()
rai ses (Not Connected, TransitionNotAlIlowed);

void term nate();
rai ses (Not Connected, TransitionNotAl Il owed);

voi d abort();
rai ses (Not Connected, TransitionNotAl Il owed);

Cf WFBase :: WMIW I Participants |istAssignedParticipants ()
rai ses (Not Connect ed);

8.3.2.3 Activity I nstance I nterface

The Activity Instance interface provides operations to access and modify the attributes and the state of an
Activitylnstance object.

The getParentProcessl nstance operation returns the Processl nstance object that owns the specific
Activitylnstance. The listAssignedParticipants operation provides the list of workflow Participants
associated to the Activity Instance. The Activitylnstance interface inherits attributes and operations from
WorkflowObject. All operations require an active connection to the Enactment Service.

interface Activitylnstance : CfWBase :: Workfl owObject {

attribute CfWBase :: WMJIDat aRef dat aRef er ence;
attribute I ong priority;

Processl nstance get Parent Processl nstance ();

Cf WFBase :: WMIW I Participants |istAssignedParticipants ()
rai ses (Not Connect ed);

8.3.2.4 Work Item Interface

The Workltem interface provides operations to access and modify the attributes and the state of a
Workltem object.

The get- and completeWorkitem operations change the State of a Workltem. getA ssignedParticipant
returns the workflow participant currently assigned to the work item; reassignWorkltem assigns it to
another participant.

interface Wrkltem: CfWBase :: Workfl onbject {

attribute CfWBase :: WMJIDat aRef dat aRef er ence;
attribute I ong priority;

Processlnstance getParentProcesslnstance ();

Activitylnstance getParentActivitylnstance ();

Version 2.0 Page 119 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

01-October-96

voi d reassign (
in CfWBase:: WITW | Parti ci pant sour ceUser,
in CfWBase:: WITW | Parti ci pant target User)

void get ()
rai ses (Not Connected, TransitionNotAl Il owed);

voi d conpl ete()
rai ses (Not Connected, TransitionNotAl Il owed);

Cf WFBase :: WMIW | Parti ci pant get Assi gnedParti ci pant ()
rai ses (Not Connect ed);

rai ses (Not Connected, I|nvalidSourceUser, I|nvalidTargetUser);

8.3.2.5 Filtered List Processing

The following interfaces provide iterators for results returned from filtered list requests; see the section on

Attributes for a description of the iterator functions.

typedef sequence<Processl nstance> Processlnstances;
typedef sequence<Activitynstance> Activitylnstances;
typedef sequence<Workltenm> Wor ki t ens;

interface ProcessDefinitionList {
attribute I ong count;

ProcessDefinition fetchProcessDefinition()
rai ses (NoMbreData);

ProcessDefinitions fetchProcessDefinitions(
in unsigned |ong howMany)
rai ses (NoMbreData);

interface Processlnstancelist {
attribute I ong count;

Processl nstance fetchProcessl nstance()
rai ses (NoMbreData);

Processl nstances fetchProcessl nstances(
in wunsigned | ong howMany)
rai ses (NoMbreData);

interface Activitylnstancelist {
attribute I ong count;

Activitylnstance fetchActivitylnstance()
rai ses (NoMbreData);

Activitylnstances fetchActivitylnstances(
in unsigned | ong howMany) ;
rai ses (NoMbreData);

interface WorkList {
attribute I ong count;

Wor kl tem f et chWor kil t en()
rai ses (NoMbreData);

Wor kl t em f et chWor ki t ens(
in wunsigned | ong howMany) ;
rai ses (NoMbreData);

}

8.3.3 The Process Definition M odule

The Process Definition Module contains the interfaces used to create and modify Process Definitions to be

executed by an Enactement Service.

Version 2.0
Copyright © 1993, 1996, The Workflow Management Coalition

Page 120 of 178

Workflow Management Application Programming Interface (Interface 2) 01-October-96

The module defines the following interfaces:

- ProcessModel Server interface, which handles connection of aworkflow participant with a particular
Enactment Service and provides factory interfaces for accessto filtered list of workflow definition
objects owned by that Enactment Service.

ProcessModel interface, which represents a workflow model; this interface serves as a factory for
components of the process model, such as ActivityDefinitions and TransitionDefinitions.
ActivityDefinition interface, which represents a node in a process model

TransitionDefinition interface, which represents a connection between ActivityDefinitions
DataDefinition interface, which defines the Process Relevant Data used by a particular process model
ApplicationDefinition interface, which represents an application that can be used to support processing
of an Activity during execution of a process model

ParticipantDefinition interface, which represents a resource that might receive Work Items during
execution of a process model

The following abbreviated IDL summarizes the interfaces contained in the CFWFBase module.

#i ncl ude “Cf WFBase. i dl”
modul e Cf WFProcessDefinition {

/1 Data type and specific exception definitions
interface ProcessMdel; /1 Forward declaration
interface ApplicationDefinition; // Forward declaration
interface ParticipantDefinition; // Forward declaration
interface Processhbdel List {

/1 lterator for process nodel query result
H

interface ApplicationDefinitionList {
.. Il lterator for application definition query result
H

interface ParticipantList {
/] lterator for participant definition query result
H

interface ProcessDefinitionServer {
/1 process definition server object definitions
H

interface Processhbdel : CfWBase:: Wor kf |l owObj ect {
... I/ process nodel object definitions
H

interface ApplicationDefinition : CfWBase:: Wrkfl owObj ect {
... I/ application definition object definitions
H

interface ParticipantDefinition : CfWBase:: Wrkfl owObj ect {
/] participant definiton object definitions
H

8.3.3.1 Data Types and Specific Exceptions
The following data types and exceptions are specific to the Process Definition Client module.

/1 TYPE DEFI NI TI ONS

/1 SPECI FI C EXCEPTI ON DEFI NI TI ONS

exception Not Connect ed() ;
exception Connect Fai | ed(Cf WFBase: : WMT'Er r or Code) ;
exception Invalidld();
Version 2.0 Page 121 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

The exceptions defined here deal with poblems related to management of the connection to the
Enactment Service.

8.3.3.2 Process Definition Server I nterface

The Process Definition Server Interface handles the connection of a particular workflow user to an
Enactment Service and provides access oto the workflow definition objects accessible through this
Enactment Service.

The connect operation initializes the WorkflowEnactmentServer; the context of the connection is defined
by the engineName and the scope. The ConnectFailed excpetion is raised when a connection could not be
established. The disconnect operation serves as a destructor for the ApplicationClientServer.

Access to the workflow objects accessible through the connection is supported by providing factory
methods for interfaces managing access to lists of workflow objects: the Open...sList operation take afilter
astheir first argument (see the CFWFBase module descritpion for details), the countFlag parameter
indicates whether the number of elements in the query result should be returned. A NotConnected
exception is raised when no connection was established. The query results are bound to a connection and
are invalidated when the connection is terminated.

interface ProcessDefinitionServer {

attribute CfWBase :: WJTNane engi neNane;
attribute CfWBase :: WVTNane scope;

voi d connect (
in CfWBase :: WMINane userld,
in string passwor d)
rai ses (ConnectFail ed);

voi d di sConnect ()
rai ses (Not Connect ed);

ProcessMWbdel creat eProcesshbdel (
in CfWBase :: WMINanme pr ocessNane)
rai ses (Not Connected);

ProcessMbdel Li st openProcessMdel sLi st (
in CfWBase :: Filter filter,
in bool ean count Fl ag)
raises (lnvalidFilter, NotConnected);

ApplicationDefinitionLi st openApplicationDefinitionsList (
in CfWBase :: Filter filter,
in bool ean count Fl ag)
raises (lnvalidFilter, NotConnected);

Parti ci pant DefinitionLi st openPartici pant DefinitionsList (

in CfWBase :: Filter filter,

in bool ean count Fl ag,

out WMTActivitylnstancelList activitylnstances,
out |ong count)

raises (lnvalidFilter, NotConnected);

ProcessMWbdel get Processhbdel (
in CfWBase :: WMIld processModel | d)
raises (lnvalidld);

ApplicationDefinition getApplicationDefinition(
in CfWBase :: WMIld appl i cationDefinitionld)
raises (lnvalidld);

ParticipantDefinition getParticipantDefinition(
in CfWBase :: WMIld partici pant Definitionld)
raises (lnvalidld);

Version 2.0 Page 122 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

8.3.3.3 Process Modd | nterface

The Process Model interface provides factory operation for Activity Definitions, Transition Definitions
and Data Definitions contained in a Process Model.
The ProcessDefinition interface inherits attributes and operations from WorkflowObject.

interface ProcesshWbdel : CfWBase :: Workfl owObj ect {

ActivityDefinition addActivityDefinition(
in CfWBase :: WMINane activi tyNane)
rai ses (Not Connect ed);

voi d renpveActivityDefinition(
in CfWBase :: WMIld activityld)
rai ses (Not Connect ed);

Dat aDefi ni ti on addDat aDefi niti on(
in CfWBase :: WMINane dat aNane,
in CfWBase :: WMIType dat aType)
rai ses (Not Connect ed);

voi d renpveDat aDefi nition(
in CfWBase :: WMIld dat al d)
rai ses (Not Connect ed);

Transi tionDefinition addTransitionDefinition(

in CfWBase :: WMINane transitionNang,
in CfWBase :: WMIld sourceActivityDefinitionld,
in CfWBase :: WMIld targetActivityDefinitionld)

rai ses (Not Connected, Invalidld);

voi d renpveTransi ti onDefinition(
in CfWBase :: WMIld transitionld)
rai ses (Not Connect ed);

8.3.3.4 Application Definition Interface

The ApplicationDefinition interface provides operations to access and modify the attributes of an
Application Definition object. All operations require an active connection to the Enactment Service.

interface ApplicationDefinition : CfWBase :: Wrkfl owbj ect {

}

8.3.3.5 Participant Definition I nterface

The ParticipantDefinition interface provides operations to access and modify the attributes of a Participant
Definition object. All operations require an active connection to the Enactment Service.

interface ParticipantDefinition : CfWBase :: Wrkfl owbj ect {
attribute WMIParti ci pant Type type;

8.3.3.6 Activity Definition Interface

The ActivityDefinition interface provides operations to access and modify the attributes of a Activity
Definition object.

The getParentProcessModel operation returns the ProcessModel abject that was used to create the specific
ActivityDefinition. All operations require an active connection to the Enactment Service.

interface ActivityDefinition : CfWBase :: Wrkfl owObj ect {

Version 2.0 Page 123 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

01-October-96

attri bute WMII npenment ati onType
attribute Cf WBase :: WMl d

ProcessMWbdel get Parent ProcessMdel

OF

i mpl enent ati onType;
i mpl enent ati onl d;

8.3.3.7 Transition Definition I nterface

The TransitionDefinition interface provides operations to access and modify the attributes of a Transition

Definition object.

The getParentProcessModel operation returns the ProcessModel object that was used to create the specific
TransitionDefinition. All operations require an active connection to the Enactment Service.

attribute CfWFBase :: WMTId
attribute CfWFBase :: WMTId

interface TransitionDefinition : CfWBase ::

ProcessMWbdel get Parent ProcessMdel

Wor kf | owObj ect {

OF

sourceActivityld;
targetActivityld;

8.3.3.8 Filtered List Processing

The following interfaces provide iterators for results returned from filtered list requests; see the section on

Attributes for a description of the iterator functions.

typedef sequence<Processhbdel > Pr ocessMbdel s;
typedef sequence<ActivityDefinition> ActivityDefinitions;
typedef sequence<TransitionDefinition> Transi ti onDefinitions;
typedef sequence<ApplicationDefinition> Appl i cationDefinitions;
typedef sequence<Parti ci pant Definition> Parti ci pant Definitions;
interface ProcessMdel sList {
attribute 1long count;
ProcesshWbdel fetch();
rai ses (NoMbreData);
ProcessMWbdel s fetchN(
in unsigned |ong howMany) ;
rai ses (NoMbreData);
H
interface ActivityDefinitionsList {
attribute 1long count;
ActivityDefinition fetch ();
rai ses (NoMbreData);
ActivityDefinition fetchN
in unsigned | ong howMany) ;
rai ses (NoMbreData);
H
interface TransitionDefinitionsList {
attribute 1long count;
TransitionDefinition fetch ();
rai ses (NoMbreData);
Transi tionDefinitions fetchN
in unsigned | ong howMany) ;
rai ses (NoMbreData);
H
Version 2.0 Page 124 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

01-October-96

interface ApplicatonDefinitionsList {
attribute 1long

rai ses (NoMbreData);

ApplicationDefinitons fetchN(
in unsigned |ong
rai ses (NoMbreData);
H

interface ParticipantDefinitionsList {
attribute long
rai ses (NoMbreData);
Partici pantDefinitions fetchN(

in wunsigned | ong
rai ses (NoMbreData);

ApplicationDefinition fetch ();

ParticipantDefinition fetch ();

count;

howMany) ;

count;

howMany) ;

8.3.4 Relationship to WfMC Standards

The C-language description has been converted into an object oriented specification. Where possible, the
syntax of C-functions has been preserved when converting to operations on abjects. Hereisalist of

changes:

The operations dealing with States and Attributes of workflow objects have been moved into the
WorkflowODbject class. The generic operations replace the object-type specific ones defined in the C-

API.

Processing of filtered lists is done in the same way as in the C-language specification, using an Iterator
instead of WM TPQueryHandle. The Iterator might return more than one element at atime.

The limits on the size of string type attributes have been removed. Same for limit on the number of
Participants associated with an Activitylnstance or Process| nstance.
The Unique Id attributes of the various workflow entities are replaced by their object Id (not an explicit

attribute).

ReturnCodes have been replaced by exceptions.

Version 2.0

Copyright © 1993, 1996, The Workflow Management Coalition

Page 125 of 178

Workflow Management Application Programming Interface (Interface 2) 01-October-96

9. Appendix D: Audit Data

The following describes the Audit Data related to the functions” defined in this specification. The WfMC
Audit Data Specification identifies events related to workflow objects (in general changes of state or of
attributes) and describes the format of Audit Data to be reported for these events. Events are in general
triggered by an external interaction with the Enactment Service, e.g., via an operation define in this
specification. An event can be a directly associated to the operation (e.g., WM StartProcessl nstance
triggers a WM Processl nstancesStarted event) or indirectly triggered by such an interaction, mediated by
the Enactment Service (e.g., WM StartProcessl nstance will cause state changes for the start activities of a
process, resulting in WM A ctivityl nstanceStateChanged events). An implementation of an Enactment
Service complies with the WfMC Audit Data Specification if Audit Records are supported for all events
identified in that document. For convenience of the reader we have included references to Audit-relevant
events triggered by the functions described in this specification; for each operation the Audit Data Record
and the directly associated event is stated. The following description provides pointers to the
corresponding definitions in the WfMC Audit Data Specification; please refer to this document for details.

9.1 Auditing Process Definitions

The following table identifies the Audit Data for WAPI functions related to state changes Process
Definitions. Operation refers to a aWAPI function defined in this specification, Event Set refersto a
section in the WfMC Audit Data Specification and Event identifies the event reported in the Audit Data
record.

Operation Audit Data Record Event
WM ChangeProcessDefinitionState Change Process WM ChangedProcessDefinitionState
Definition State

9.2 Auditing Process Instances

The following table identifies the Audit Data for WAPI functions related to state changes and changes of
attributes of activity instances. Operation refersto a aWAPI function defined in this specification, Event
Set refersto a section in the WfMC Audit Data Specification and Event identifies the event reported in the
Audit Data record.

Operation Audit Data Record Event

WM CreateProcess| nstance Create/Start WM CreatedProcess| nstance
Process/Subprocess
Instance State

WM StartProcessl nstance Create/Start WM StartedProcess| nstance
Process/Subprocess
Instance State

WM ChangeProcessl nstancesState Change WM ChangedProcessl nstanceState
Process/Subprocess
Instance State

WM ChangeProcessl nstanceState Change WM ChangedProcessl nstanceState
Process/Subprocess
Instance State

WM TerminateProcessl nstances Change WM TerminatedProcesslnstance
Process/Subprocess

2 The new Process Definition functions are not covered here at the moment.

Version 2.0 Page 126 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

01-October-96

Instance State

WM TerminateProcessl nstance

Change
Process/Subprocess
Instance State

WM TerminatedProcessl nstance

WM AbortProcessl nstances

Change
Process/Subprocess
Instance State

WM AbortedProcessl nstance

WM AbortProcessl nstance

Change
Process/Subprocess
Instance State

WM AbortedProcessl nstance

WM A ssignProcessl nstancesAttribute

Assign Process
Instance Attributes

WM A ssignedProcessl nstanceAttributes

WM A ssignProcessl nstanceAttribute

Assign Process
Instance Attributes

9.3 Auditing Activity Instances

The following table identifies the Audit Data for WAPI functions related to state changes and changes of
attributes of activity instances. Operation refersto a aWAPI function defined in this specification, Event
Set refersto a section in the WfMC Audit Data Specification and Event identifies the event reported in the

Audit Datarecord.

WM A ssignedProcessl nstanceAttributes

Operation Audit Data Record Event

WM ChangeA ctivityl nstancesState Change Activity WM ChangedA ctivitylnstanceState
Instance State

WM ChangeA ctivitylnstanceState Change Activity WM ChangedA ctivitylnstanceState
Instance State

WMASssignActivitylnstancesAttribute | Assign Activity WMASssignedActivitylnstanceAttributes
Instance Attributes

WMASssignActivitylnstanceAttribute | Assign Activity WMASssignedActivitylnstanceAttributes

9.4 Auditing Workitems

Instance Attributes

The following table identifies the Audit Data for WAPI functions related to work items. Operation refers
to aaWAPI function defined in this specification, Event Set refers to a section in the WIMC Audit Data
Specification and Event identifies the event reported in the Audit Data record.

Operation Audit Data Record Event

WMASssignWorkitemAttribute Assign Workitem WM A ssignedWorkitemAttributes
Attributes

WM ChangeWorkitemState Change Workitem | WMChangedWorkitemState
State

WM GetWorkitem Change Workitem | WM SelectedWorkitem (optional)
State

WM CompleteWorkitem Change Workitem | WM CompletedWorkitem
State

WM ReassignWorkitem Assign/Reassign WM ReassignedWorkitem
Workitem

Version 2.0 Page 127 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

10. Appendix E: Conformance Profiles

This chapter deals with definition of criteria for a specific implementation of a Workflow Enactment
Service to be conformant with the WAPI specification. Rather than requesting an implementation to
support all of the functions specified above to conform with the WM C standard, we define various levels
of conformance. A set of Profilesis defined, each profile identifying a set of operations that address a
specific usage scenario. An implementation of an Enactment Service might choose to comply with some,
but not necessarily all of the Profiles.

10.1 Philosophy and Approach

The following conformance profiles are non-exclusive sets of functions from the WAPI2 specification.
They strike a balance between the Vendor’ s desire to simplify the conformance process and the
Customer’s desire to have a straightforward and understandable conformance statement. The
Conformance Profiles achieve this balance through the use of required WAPI Functions within optional
profiles -- by definition, any profile is optional but its functionality is not. The philosophy behind their
organization is as follows:

Their basic structure is easy to understand. The framework is understandable to customers and vendors
who may not be intimately familiar with the specification and the history of its development.

They provide flexibility for vendors by avoiding an * all-or-nothing” conformance framework. The
profiles mirror the general capabilities of today’ s workflow products. Vendors may choose to support any
number of the profiles, but do not have to support them all -- we will measure conformance on a profile-
by-profile basis. For example, a vendor could choose to provide only WorkList Handler support, and
could earn a conformance certification just for that Profile.

Each Profile defines a set of functions that deliver business value to the customer in a predictable,
meaningful way. Customers can evaluate products using these conformance profiles. Each profile
provides a meaningful service between the vendor’s product and the customer’s client applications that
use the profile. Customers want behavioral consistency across different implementations of this interface;
that consistency is the result of the simple nature of these profiles.

10.2 Practice and Policy

A vendor can not claim conformance to thisor any other WfMC specification unless specifically
authorized to make that claim by the WfMC. WfMC grants this permission only upon the
verification of the particular vendor’simplementation of the published specification, according to
applicabletest procedures defined by WIMC.

When a vendor chooses to support a Conformance Profile, all WAPI Functions in that profile must
actually “do something” in the vendor product representative of that WAPI Function’s purpose. It is not
acceptable to return a“WM_Unsupported” error message for a WAPI Function that is part of a supported
profile.

Each vendor must produce documentation showing attribute mappings; i.e., which of their product's
attributes are accessible using any of the attribute WAPI Functions in each supported profile.

Vendors may choose to support additional WAPI functions, along with vendor-specific API functions not
prescribed in the Coalition specification. In such a case, WM C encourages the vendor to document those
function calls (and their associated attribute mappings) as an addendum to their documentation.

Version 2.0 Page 128 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Each implementation must include program stubs for all unsupported WARPI functions. A call to any of
these unsupported functions must return a“WM_Unsupported” error message.

10.3 The WAPI Conformance Profiles and Functions

For each Conformance Profile a function is defined that allows an application to check whether or not the
specific Profile is supported by the implementation. Each implementation must include all
I s<xxx>Pr ofileSupported() functions. These functions are in the following format:

WM I s<xxx>Pr ofileSupported() - where <xxx> is the name of a particular Conformance Profile
- APl commands are intended to allow a user application to inquire whether a vendor's
implementation of WM functions supports a certain Conformance Profile.

10.3.1 WMIsWorkListHandlerProfileSupported

NAME
WMIsWorkListHandler ProfileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WMIsWorkListHandler ProfileSupported informs the user application that this WFMC
implementation fully supports all the WorkList Handler functions that comprise the Work List
Handler Conformance Profile.

INTENDED USE

Implementation of this conformance profile provides external worklist handler functionality to a client
application.

WMTEr r Ret Type VWM sWor kLi st Handl er Pr of i | eSupport ed()

Argument Description
No Argunents

ERROR RETURN VALUE

WM TRUE - If Conformance Profile is supported
WM FALSE - If Confornmance Profile is not supported.

WORKLIST HANDLER CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Worklist Handler Conformance Profile:

WM Connect

WM Disconnect

WM OpenWorkL.ist

WM FetchWorkltem
WMCloseWorkList

WM GetWorkltem

WM CompleteWorkltem

WM ReassignWorkltem

WM OpenWorkltemAttributesList
WM FetchWorklItemAttribute
WM CloseWorkltemAttributesList
WM GetWorkltemAttributeVaue

Version 2.0 Page 129 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

WMASssignWorkltemAttribute
RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by
an implementation that is compliant with the Audit Data Profile:
All Audit Events related to state and attribute changes of Work Items, described by the Audit Data
Types ' Change Workltem State’ and * Assign Workltem Attributes

Version 2.0 Page 130 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

10.3.2 WM I sProcessContr ol StatusPr ofileSupported

NAME

WM I sProcessControl StatusPr ofileSupported - Connect to the WFM Engine for this series of
interactions

DESCRIPTION

The WM sProcessContr ol StatusPr ofileSupported informs the user application that this
WFMC implementation fully supports all the Process Control Status functions that comprise the
Process Control Status Conformance Profile.

INTENDED USE

Implementation of this conformance profile alows a client application to select and manage
process instances.

WMTEr r Ret Type VWM sProcessCont r ol St at usPr of i | eSupport ed()

Argument Description
No Argunents

ERROR RETURN VALUE

WM TRUE - If Conformance Profile is supported
WM FALSE - If Confornmance Profile is not supported.

PROCESS CONTROL STATUS CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Process Control Status Conformance Profile:

WM Connect

WM Disconnect

WM OpenProcessDefinitionsList

WM FetchProcessDefinition

WM CloseProcessDefinitionsList

WM CreateProcess| nstance

WM StartProcess

WM TerminateProcessl nstance

WM OpenProcessl nstanceStatesL ist
WM FetchProcessl nstanceState

WM CloseProcessl nstanceStatesList
WM ChangeProcessl nstanceState

WM OpenProcessl nstancesL ist

WM FetchProcessinstance

WM CloseProcesslnstancesList

WM GetProcesslnstance

WM OpenProcessl nstanceAttributesL ist
WM FetchProcessl nstanceAttribute
WM CloseProcessl nstanceAttributesList
WM GetProcessl nstanceAttributeValue
WM A ssignProcessl nstanceAttribute

Version 2.0 Page 131 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by
an implementation that is compliant with the Audit Data Profile:
All Audit Events related to state and attribute changes of Process Instances, described by the Audit
Data Types ‘ Change Process / Subprocess Instance State’ and * Assign Process/ Subprocess Attributes

Version 2.0 Page 132 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

10.3.3 WM I sProcessDefinitionPr ofileSupported

NAME
WM I sPracessDefintionPr ofileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WM sProcessDefintionPr ofileSupported informs the user application that this WFMC
implementation fully supports all the Process Defintion functions that comprise the Process
Defintion Conformance Profile.

INTENDED USE

Implementation of this conformance profile enables a client application to display alist of
available process definitions and their respective states.

WMTEr r Ret Type VWM sProcessDef i nti onProfil eSupported()

Argument Description
No Argunents

ERROR RETURN VALUE

WM TRUE - If Conformance Profile is supported
WM FALSE - If Confornmance Profile is not supported.

PROCESS DEFINITION CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Process Defintion Conformance Profile:

WM Connect

WM Disconnect

WM OpenProcessDefinitionStatesL ist
WM FetchProcessDefinitionState
WM CloseProcessDefinitionStatesList
WM ChangeProcessDefinitionState
WM OpenProcessDefinitionsList

WM FetchProcessDefinition

WM CloseProcessDefinitionsList

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by
an implementation that is compliant with the Audit Data Profile:
All Audit Events related to state changes of Process Definitions, described by the Audit Data Types
‘Change Process Definition State’

Version 2.0 Page 133 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

10.3.4 WMIsProcessAdminProfileSupported

NAME
WM I sProcessAdminProfileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WM sProcessAdminPr ofileSupported informs the user application that this WFMC
implementation fully supports all the Process Admin functions that comprise the Process Admin
Conformance Profile.

INTENDED USE

Implementation of this conformance profile allows a client application to support global
manipulation of process instances by an administrator. Contrast this set with the Process Control
Status functions which work only on individual process instances.

WMTEr r Ret Type VWM sPr ocessAdmi nProf i | eSupport ed()

Argument Description
No Argunents

ERROR RETURN VALUE

WM TRUE - If Conformance Profile is supported
WM FALSE - If Confornmance Profile is not supported.

PROCESS ADMIN CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Process Admin Conformance Profile:

WM Connect

WM Disconnect

WM ChangeProcessl nstancesState

WM TerminateProcess| nstances

WM AbortProcess| nstances

WM A bortProcess nstance

WM A ssignProcessl nstancesAttribute
WM OpenProcessl nstanceStatesL i st
WM FetchProcessl nstanceState

WM CloseProcessl nstanceStatesList
WM OpenProcessDefinitionsList

WM FetchProcessDefinition

WM CloseProcessDefinitionsList

WM OpenProcessl nstancesL ist

WM FetchProcessi nstance

WM CloseProcesslnstancesList

WM OpenProcessl nstanceAttributesL ist
WM FetchProcessl nstanceAttribute
WM CloseProcessl nstanceAttributesList

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by
an implementation that is compliant with the Audit Data Profile:

Version 2.0 Page 134 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

All Audit Events related to state changes of Process Instances, described by the Audit Data Types
‘Change Process / Subprocess Instance State’

Version 2.0 Page 135 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

10.3.5 WMIsActivityControlStatusPr ofileSupported

NAME

WM I sActivityControl StatusPr ofileSupported - Connect to the WFM Engine for this series of
interactions

DESCRIPTION

The WM I sActivityContr ol StatusPr ofileSupported informs the user application that this
WFMC implementation fully supports all the Activity Control Status functions that comprise the
Activity Control Status Conformance Profile.

INTENDED USE

Implementation of this conformance profile alows a client application to select and manage
activity instances.

WMTEr r Ret Type VWM sAct i vi t yCont rol St at usProfi | eSupport ed()

Argument Description
No Argunents

ERROR RETURN VALUE

WM TRUE - If Conformance Profile is supported
WM FALSE - If Confornmance Profile is not supported.

ACTIVITY CONTROL STATUS CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Activity Control Status Conformance Profile:

WM Connect

WM Disconnect

WM OpenActivityl nstanceStatesl ist
WMFetchActivitylnstanceState

WM CloseActivityl nstanceStatesL ist
WM ChangeA ctivitylnstanceState

WM OpenActivitylnstancesList
WMFetchActivityl nstance

WM CloseActivitylnstancesList

WM GetActivitylnstance

WM OpenActivitylnstanceAttributesL ist
WNMFetchActivitylnstanceAttribute
WM CloseActivityl nstanceAttributesL ist
WM GetActivityl nstanceAttributeVaue
WMASssignActivitylnstanceAttribute

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by
an implementation that is compliant with the Audit Data Profile:
All Audit Events related to state and attribute changes of Activity Instances, described by the Audit
Data Types ‘ Change Activity Instance State’ and * Assign Activity Instance Attributes

Version 2.0 Page 136 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

10.3.6 WMIsActivityAdminProfileSupported

NAME
WMIsActivityAdminProfileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WM IsActivityAdminPr ofileSupported informs the user application that this WFMC
implementation fully supports all the Activity Admin functions that comprise the Activity Admin
Conformance Profile.

INTENDED USE

Implementation of this conformance profile allows a client application to support global
manipulation of activity instances by an administrator. Contrast this set with the Activity
Control Status functions which work only on individual activity instances.

WMTEr r Ret Type VWM sAct i vi t yAdmi nProfi | eSupport ed()

Argument Description
No Argunents

ERROR RETURN VALUE

WM TRUE - If Conformance Profile is supported
WM FALSE - If Confornmance Profile is not supported.

ACTIVITY ADMIN CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Activity Admin Conformance Profile:

WM Connect

WM Disconnect

WM ChangeA ctivitylnstancesState
WMASssignActivitylnstancesAttribute
WM OpenProcessDefinitionsList

WM FetchProcessDefinition

WM CloseProcessDefinitionsList

WM OpenActivityl nstanceStatesl ist
WMFetchActivitylnstanceState

WM CloseActivityl nstanceStatesL ist
WM OpenActivitylnstanceAttributesL ist
WNMFetchActivitylnstanceAttribute
WM CloseActivityl nstanceAttributesL ist

RELATED AUDIT EVENTS

The following Audit events are related to the operations included in this profile and would be audited by
an implementation that is compliant with the Audit Data Profile:
All Audit Events related to state and attribute changes of Activity Instances, described by the Audit
Data Types ‘ Change Activity Instance State’ and * Assign Activity Instance Attributes

Version 2.0 Page 137 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

10.3.7 WM IsEntityHandler ProfileSupported

NAME
WM I sEntityHandler ProfileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WM IsEntityHandler ProfileSupported informs the user application that this WFMC
implementation fully supports al the Entity Handler functions that comprise the Entity Handler
Conformance Profile.

INTENDED USE

Implementation of this conformance profile provides entity handler functionality to a client
application..

WMTEr r Ret Type VWM sEnt i t yHandl er Pr of i | eSupport ed()

Argument Description
No Argunents

ERROR RETURN VALUE

WM TRUE - If Conformance Profile is supported
WM FALSE - If Confornmance Profile is not supported.

ENTITY HANDLER CONFORMANCE PROFILE FUNCTIONS

The following functions comprise the Entity Handler Conformance Profile:

WM Connect

WM Disconnect

WM OpenProcessDefinitionsList
WM FetchProcessDefinition
WM CloseProcessDefinitionsList
WM CreateEntity
WMAddEntity

WM OpenEntitiesList

WM OpenOwnedEntitiesList
WM FetchEntity
WMCloseEntitiesList

WM RemoveEntity

WM Del eteEntity

10.3.8 WMIsAuditRecordProfileSupported

NAME
WM I sAuditRecordProfileSupported - Connect to the WFM Engine for this series of interactions
DESCRIPTION

The WM IsAuditRecor dProfileSupported informs the user application that this WFMC
implementation fully supports all the Audit Record capahilities for all other implemented
Conformance Profiles.

Version 2.0 Page 138 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

INTENDED USE
Implementation of this conformance profile provides audit record support for the other
conformance profiles.

WMTEr r Ret Type VWM sAudi t Recor dPr of i | eSupport ed()

Argument Description
No Argunents

ERROR RETURN VALUE

WM TRUE - If Conformance Profile is supported
WM FALSE - If Conformance Profile is not supported.

AUDIT RECORD CONFORMANCE PROFILE FUNCTION

The following guidelines apply to the Audit Record Conformance Profile:

An implementation of any of the previous WAPI 2 Conformance Profiles may optionally include
implementation of the Audit Record requirement for that Profile’s functions. In order to be conformant
with the Audit Record Specification for this interface, the vendor must implement Audit Records for each
implemented Profile. For example, if avendor has a conforming implementation of both the WorkL st

Handler and the Process Control and Status profiles, they must implement Audit Records for both profiles
in order to achieve Audit Record Specification Conformance.

10.3.9 WM ToolAgentProfileSupported

NAME

WM T ool AgentPr ofileSuppor ted — Connects and supports different Tool Agents to enable application
invokation

DESCRIPTION

The WM T ool AgentProfileSupported informs the user application that this WFMC
implementation fully supports application invokation via the Tool Agent architecture model.

INTENDED USE

Implementation of this conformance profile provides an interface to integrate application control
mechanisms for workflow integration reasons.

WMTEr r Ret Type WWMTool Agent Pr of i | eSupport ed()

Argument Description
No Argunents

ERROR RETURN VALUE

WM TRUE - If Conformance Profile is supported
WM FALSE - If Confornmance Profile is not supported.

TOOL AGENT CONFORMANCE PROFILE FUNCTION
The following guidelines apply to the Tool Agent Conformance Profile:

Version 2.0 Page 139 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

An implementation of any of the previous WAPI 2 Conformance Profiles may optionally include
implementation of the Tool Agent requirement for that Profile's functions. In order to be conformant with
the Tool Agent Specification for this interface, the vendor must implement Tool Agent interfaces, which
enabl e application invokation via the implemented Profile.

The following functions comprise the Tool Agent Conformance Profile:

WMTAConnect
WMTADisconnect
WMTAInvokeApplication
WMTARequestAppStatus
WMTATerminateApp

Version 2.0 Page 140 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Version 2.0 Page 141 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11. Appendix F: Workflow Definition Functions

The following describes a new set of functions that deals with definition of workflow models.

The first section describes an abstract machinery for handling of building blocks of workflow models -
abstract entities. Entity handling functions include creating and deleting entities as well as functions to get
and set their attributes.

An entity can be whatever a specific vendor supports as building block for a workflow definition; however,
abasic set of entity types that should always be supported (i.e., those corresponding to the Instances that
can be accessed via the Application Client Interface) is defined in the last section of this chapter.

The middle piece of this chapter deals with connecting the abstract machinery of entities to the objects
already introduced in this specification: entities are owned either by an Enactment Service or by a
particular Process Definition; functions are described that enable editing of workflow abjectsin the
context of an Enactment Service or a concrete Process Definition.

11.1 Entity Handling functions

The following defines a set of generic functions which treat al objects maintained by an Enactment
Service as Entities, ignoring their specific semanticsin a Workflow context. All entities have an
identifier, a name and a type and other, type specific attributes. The ID is unique within a scope and
remains constant from session to session, and from client to client. The ID is used to allow entitiesto refer
to each other in a persistent way.

11.1.1 Entity Data Types

typedef struct

WMTEntityl D entity_id;
WMT Text entity_type[NAVE_STRI NG_SI ZE] ;
WMT Text entity_nane[NAME_STRI NG_SI ZE] ;
void * entity_private_data;
} WMTEntity;
Version 2.0 Page 142 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.1.2 WMZCreateEntity

NAME
WM CreateEntity - Creates a new entity.
DESCRIPTION

This is how new entities are created that compose the workflow definition. The entity created isa
workflow persistent entity. The structure for the new entity will be returned. The entity is scoped either by
the context of an enactment service or by another entity.

WMTEr r Ret Type WMCreat eEntity (
in WMIPSessi onHandl e psession_handl e,

in WMIPEntity scopi ng_entity,
in WMINanme entity_cl ass,
in WMINanme entity_nane,
out WMIPENtity entity)
Argument Description
psession_handl e Pointer to the structure with the session information created by a call to
_ _ WM Connect.
scoping_entity The entity that owns the new entity
entity class The vendor defined entity classthat is to be created. Specifies what class of
_ entity isto be created.
entity_name The user defined name provided for this entity.
entity Pointer to a buffer which will receive the entity structure.
ERROR RETURN VALUE
WM SUCCESS

VM | NVALI D_SCOPE
WM_| NVALI D_CLASS
WM _READONLY_CLASS

11.1.3 WMOpenEntitiesList

NAME

WM OpenEntitiesList - Specifies and opens the query to produce alist of all entities (owned by a specific
entity) that meet the selection criterion of the filter.

DESCRIPTION

This command directs the WFM Engine to open the query to provide alist of entities which are available
to a particular workflow participant, some of which may be modifiable by the participant. A typical usage
for this operation isto get alist of all entities of a specific entity_type within a certain process model.
This command will return a query handle for alist of entities that match the specified value for the
attribute. The command will also return, optionally, the total count of entities available. If the count is
reguested and the implementation does not support it, the command will return apcount value of -1. If
pentity_def_filter iISNULL, then the function, with the corresponding fetch calls will return the list of
ALL entitiesin a given scope.

WMTEr r Ret Type WMOpenEntitiesList (
i WMIPSessi onHandl e psessi on_handl e,

=

in WMIPEntity scopi ng_entity,
in WMIPFilter pentity_def _filter,
in WMIBool ean count _f1l ag,
out WMIPQuer yHandl e pquery_handl e,
out WMTPI nt 32 pcount)
Version 2.0 Page 143 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.
scoping_entity The entity that represents the scope of entities to be included in the query result
pentity def_filter Fjjter associated with the entities.

count _fl ag Boolean flag that indicates if the total count of entities should be returned.
pquery_handl e Pointer to a structure containing a unique query information.

Pcount Total number of entities that fulfill the filter condition.

ERROR RETURN VALUE

WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_FI LTER
WM | NVAL| D_SCOPE

REQUIREMENTS

No requirements are assumed to exist with regard to the type of process model. No requirements are
assumed to exist with regard to how workflow participant’s are identified within the WFM Engine.

RATIONALE FOR API

This command and the corresponding fetch calls alows a workflow participant to retrieve the entities
which aworkflow participant is authorized to work on.

Version 2.0 Page 144 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.1.4 WM FetchEntity

NAME

WM FetchEntity - Returns the next entity from the set of entities that met the selection criterion stated in
the WM OpenEntitiesList call.

DESCRIPTION

This command directs the WFM Engine to provide one entity from the list of entities which are available
to a particular workflow participant, some of which may be modifiable by the participant. It is assumed
that not all processes in an organization may be modified by all workflow participants. This fetch
function, as well as all other fetch functionsin this API, will return subsequent items after every call, one
at atime. The fetch processis complete when the function returns the error Wy NO MORE_DATA. The sort
order in which the items are returned is specific of the workflow engine servicing the call, no specific

order should be assumed.

WMTEr r Ret Type WMFet chEntity (
in WMIPSessi onHandl e psessi on_handl e,
in WMIPQuer yHandl e pquery_handl e,
out WMIPEntityl D entity_id)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.

pquery_handl e Identification of the specific query handle returned by the WM OpenEntitiesList
o guery command.

entity id Id of the next entity.

ERROR RETURN VALUE

WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_ENTI TY

WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

Version 2.0 Page 145 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

11.1.5 WMCloseEntitiesList

NAME
WM CloseEntitiesList - Closes the query of entities.

DESCRIPTION

WMTEr r Ret Type WMCl oseProcessMbdel Entiti esLi st (
in WMIPSessi onHandl e psessi on_handl e,

in WMIPQuer yHandl e pquery_handl e)

01-October-96

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this action.
pquery_handl e Identification of the specific query handle returned by the

WM OpenEntitiesList query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0
Copyright © 1993, 1996, The Workflow Management Coalition

Page 146 of 178

Workflow Management Application Programming Interface (Interface 2)

11.1.6 WMDeleteEntity

NAME
WM RemoveEntity - Deletes an entity.

DESCRIPTION

WMTEr r Ret Type WWDel et eEntity (
in WMIPSessi onHandl e psession_handl e,
in WMIPEntity scopi ng_entity,
in WMIPEntitylD entity_id)

Argument Description

01-October-96

psession_handl e Pointer to the structure with the session information created by a call to

_ _ WM Connect.
scoping_entity The entity that owns the entity to be deleted

entity id Pointer to the unique id of the entity being deleted.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SCOPE

Version 2.0
Copyright © 1993, 1996, The Workflow Management Coalition

Page 147 of 178

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.2 Entity Attribute Manipulation

Every entity has attributes which contain specific information about the entity. These values are accessed
via the WM GetEntityAttributeV alue and WM SetEntityAttributeV alue commands. Standard attributes
will be defined for each standard entity type, and there will be other attributes that vendors will wish to
implement specifically for their systems. In this way the entities are extensible by vendors.

Some attributes contain scalar values, and others contain a collection of values. The multi valued
attributes are called “attribute lists” in this document. The values in an attribute list are accessed through
the following functions: WM OpenEntityAttributeV aluel ist, WM FetchEntityAttributeV alue,

WM CloseEntityAttributeVVaueList. The open command returns a query handle which is used to fetch
subsequent values. Multi-valued attributes are updated though the use of WM ClearEntityAttributel ist
and WM AddEntityAttributeValue.

Version 2.0 Page 148 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.2.1 WM OpenEntityAttributesList

NAME

WM OpenEntityAttributesList - Specifies and opens the query to produce the list of attributes for a
specific entity that match the filter criterion.

DESCRIPTION

This command will return a query handle for alist of attributes for an entity. The command will also
return, optionally, the total count of attributes available. If the count is requested and the implementation
does not support it, the command will return apcount value of -1.

One of the uses of this API, together with the corresponding fetch and close cals isto allow aworkflow
application to query the Workflow Engine for the available attributes that are defined for an entity, in
order to offer thislist to the application user.. If pentity_attr_filter iSNULL, then the function, with
the corresponding fetch calls will return the list of ALL attributes available for the entity.

WMTEr r Ret Type WMOpenEntityAttributesList (
in WMIPSessi onHandl e psessi on_handl e,

in WMIPEntity scopi ng_entity,
in WMIEntity_Id entity_id,
in WMIPFilter pentity_attr_filter,
in WMIBool ean count _f1l ag,
out WMIPQuer yHandl e pquery_handl e,
out WMTPI nt 32 pcount)
Argument Name Description
psession_handl e Pointer to a structure containing information about the context for
_ _ this action.
scoping_entity The entity that scopes the entity
entity_id
pentity attr_filter Filter associated with the entity attributes.
count_flag Boolean flag that indicates if the total count of entity attributes
should be returned.
pquery_handl e Pointer to a structure containing a unique query information.
pcount Total number of attributes for this entity.
ERROR RETURN VALUE
VWM SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_ENTI Y

Version 2.0 Page 149 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.2.2 WM FetchEntityAttribute

NAME

WM FetchEntityAttribute - Returns the next entity attribute from the list of attributes that match the
filter criterion.

DESCRIPTION

This command returns an entity attribute. This fetch function will return subsequent entity attributes after
every call. The fetch processis complete when the function returns the error Wy NO_MORE_DATA. The
function will return attribute name and its type and length; valid types are all WMT data types defined
below in this document plus

expressions of the form ListOf (Entity_Class) where Entity Classis a string, identifying an entity class

supported by the Enactment Service

expressions of the form ListOf(Data_Type) where Data_Type is one of the basic WMT types
Valuesof attributes of type List are handled using the WMT...EntityAttributeV aluesL ist operations
described below.

WMTEr r Ret Type WMFet chEntityAttribute (

i WMIPSessi onHandl e psessi on_handl e,
WMTPQuer yHandl e pquery_handl e,

out WMIPAttrNane pattribute_nane,

ut WMTPI nt 32 pattribute_type,

WMTPI nt 32 pattribute_Il ength,

n WMTI nt 32 buffer_size)

SEEEEIE
=

Argument Name Description
psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the
_ WM OpenEntityAttributesL ist query command.

pattribute name Pointer to the name of the attribute.

pattribute_type Pointer to the type of the attribute.

pattribute_length Pointer to the length of the attribute value.

buffer_size Size of the buffer.

ERROR RETURN VALUE

WM _SUCCESS

WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE
WM _NO_MORE_DATA

Version 2.0 Page 150 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

11.2.3 WMCloseEntityAttributesList

NAME
WM CloseEntityAttributesList - Closes the query for entity attributes.

DESCRIPTION

WMTEr r Ret Type WMCl oseEntityAttri butesList (
in WMIPSessi onHandl e psessi on_handl e,

in WMIPQuer yHandl e pquery_handl e)

01-October-96

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this
action.

pquery_handl e Identification of the specific query handle returned by the

WM OpenEntityAttributesL ist query command.

ERROR RETURN VALUE

W _SUCCESS
WM | NVALI D_SESSI ON_HANDLE
WM | NVALI D_QUERY_HANDLE

Version 2.0
Copyright © 1993, 1996, The Workflow Management Coalition

Page 151 of 178

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.2.4 WM GetEntityAttributeValue

NAME
WM GetEntityAttribute - Retrieves an attribute from an entity.
DESCRIPTION

Returns the value of the attribute named. See WM OpenEntityAttributeValueList to get al of the elements
of amulti-valued attribute. The value of the attribute named is copied into the attribute_value buffer
specified. If the buffer is not large enough for the entire value, then only the part that fits will be placed in
the buffer, but no error will result. The attribute _length will return the correct length of the attribute
value, not necessarily the amount of data returned.

WMTEr r Ret Type WMGet Enti tyAttri buteVal ue (
in WMIPSessi onHandl e psession_handl e,

in WMIPEntity scopi ng_entity,
in WMIPEntity entity_handl e,
in WMIPAttr Nane attribute_name,
out WMTI nt 32 attribute_type,
out WMTI nt 32 attribute_l ength,
out WMIPVoi d pattribute_val ue,
in WM nt 32 buf fer _si ze)
Argument Description
psession_handl e Pointer to the structure with the session information created by a call to
_ WM Connect.
entity_handl e Pointer to the entity structure from which the attribute is being retrieved.
attribut e_nane The name of the attribute from which to retrieve the value.
attribute_type Returns the type of the value that has been returned.
attribute_ength Returns the length of the value in the attribute
pattribute val ue A pointer to a buffer which will receive the value of the attribute.
buffer_size The size of the buffer. This value used by the API to restrict writing of datato
this length.
ERROR RETURN VALUE
WWW_SUCCESS

WM _NOT_SI NGLE_VALUED

Version 2.0 Page 152 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.2.5 WM OpenEntityAttributeValuelL ist

NAME

WM OpenEntityAttributeValueList - opens a multi-valued attribute on an entity for retrieving each of the
valuesindividually. The type of avalue from the attribute is returned. A query handle is returned to fetch
the individual values from. The count of itemsin the collection is optional.

If the name of a single valued attribute is given, an error will result.

DESCRIPTION

WMTEr r Ret Type WMOpenEntityAttri buteVal ueli st (
in WMIPSessi onHandl e psession_handl e,

in WMIPEntity scopi ng_entity,
in WMIPEntity entity_handl e,
in WMIPAttr Nane attribute_name,
out WMTI nt 32 attribute_type,
out WMIPQuer yHandl e query_handl e,
out WMTPI nt 32 pcount)
Argument Description
psession_handl e Pointer to the structure with the session information created by a call to
WM Connect.
entity _handle Pointer to the struct representing the entity .
attribute_name The name of the multi-valued attribute to retrieve values from.
attribute_type The collection of values as assumed to be of the same type since a collection is

just amulti-valued attribute, so the collection_typeisreally the type of asingle
value in the collection.

query_handl e This query handle is used for WM FetchEntityCollectionVal ue and
WM CloseEntityCollection
pcount The number of values held in this attribute. Thisisoptional. The value of

negative one (-1) will indicate that the value is not supported.

ERROR RETURN VALUE

W _SUCCESS
WM _NOT_MULTI _VALUED

Version 2.0 Page 153 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96
11.2.6 WMFetchEntityAttributeValue
NAME
WM FetchEntityAttributeValue - Retrieves an attribute from an entity.
DESCRIPTION
WMTEr r Ret Type WMFet chEntityAttri but eVal ue(

in WMIPSessi onHandl e psession_handl e,

in WMIPQuer yHandl e pquery_handl e,

out WMTI nt 32 attribute_l ength,

out WMIPVoi d pattribute_val ue,

in WM nt 32 buf fer _si ze)
Argument Description
psessi on_handl e Pointer to the structure with the session information created by acall to

WM Connect.
pquery_handl e Pointer to the query structure created with WM OpenEntityCollection
attribute_ength Returns the length of the value in the attribute
pattribute_val ue A pointer to a buffer which will receive the value of the attribute.
buffer_size The size of the buffer. This value used by the API to restrict writing of datato
this length.

ERROR RETURN VALUE
WM_SUCCESS
Version 2.0 Page 154 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.2.7 WMCloseEntityAttributeValuelL ist

NAME

WM CloseEntityAttributeValuel ist - Closes the query handle used to retrieve a collection (a multi-
valued attribute).

DESCRIPTION

WMTEr r Ret Type WMCl oseEntityAttri buteVal ueli st (
in WMIPSessi onHandl e psession_handl e,

in WMIPQuer yHandl e pquery_handl e)

Argument Description
psession_handl e Pointer to the structure with the session information created by a call to
WM Connect.
pquery_handl e Pointer to the query structure created with WM OpenEntityCollection
ERROR RETURN VALUE
VWM _SUCCESS
Version 2.0 Page 155 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.2.8 WM AssignEntityAttributeValue

NAME

WM AssignEntityAttributeValue - Set an attribute of an entity.

DESCRIPTION

WMTEr r Ret Type WMAssi gnEntityAttri buteVal ue (

=}

=}

WMTI nt 32
WMTI nt 32
WMTPText

=}

=}

=}

Argument

psessi on_handl e

entity_handl e
attri bute_nane
attribute_type
attribute_l ength
pattribute_val ue

in WMIPSessi onHandl e psession_handl e
i WMTPENtity entity_handl e
WMTPAL t r Nanme attri bute_nane,

attribute_type
attribute_length
pattribute_val ue)

Description

Pointer to the structure with the session information created by a call to
WM Connect.

Pointer to the entity structure from which the attribute is being retrieved.
The name of the attribute to put the value into.

The type of the value.

The length of the value in the buffer.

A pointer to a buffer which contains the value of the attribute.

ERROR RETURN VALUE

W _SUCCESS
WM _NOT_SI NGLE_VALUED

Version 2.0

Page 156 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.2.9 WMClearEntityAttributelList

NAME
WM ClearEntityAttributeList - Deletes all of the values in a multi-valued attribute.

DESCRIPTION

WMTEr r Ret Type WMCl ear Enti t yAttri buteLi st (
in WMIPSessi onHandl e psession_handl e,

in WMIPEntity entity_handl e,
in WMIPAttr Nane attribute_name
)
Argument Description
psession_handl e Pointer to the structure with the session information created by a call to
_ WM Connect.
entity_handl e Pointer to the entity structure from which the attribute is being erased.
attribute_name The name of the attribute to be cleared out.
ERROR RETURN VALUE

W _SUCCESS
WM _NOT_MULTI _VALUED

Version 2.0 Page 157 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.2.10 WMAddEntityAttributeValue

NAME
WM AddEntityAttributeValue - Add a value to a multi-valued attribute of an entity.

DESCRIPTION

WMTEr r Ret Type WMAddENtityAttri buteVal ue(

i WMIPSessi onHandl e psessi on_handl e,
WMTPEntity entity_handl e,

WMTPAL t r Nanme attri bute_nane,

WMTI nt 32 attribute_type,

WMTI nt 32 attribute_l ength,
WMTPVoi d pattribute_val ue

3‘3

=}

=}

=}

=}

‘

Argument Description
psession_handl e Pointer to the structure with the session information created by a call to
_ WM Connect.
entity_handl e Pointer to the entity structure from which the attribute is being retrieved.
attribut e_nane The name of the collection (multi-valued attribute) to add the value into.
attribute_type The type of the value.
attribute_ength The length of the value in the buffer.
pattribute_val ue A pointer to a buffer which contains the value of the attribute.
ERROR RETURN VALUE
WM _SUCCESS

WM _NOT_MULTI _VALUED

Version 2.0 Page 158 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.3 Process Modelling Functions

The following set of functions supports creation and modification of a workflow process model. A process
model is made up from building blocks called process definition entities in this specification. Examples
for process definition entities are Activity Definitions (the nodes of a process model, which become
Activity Instances when the process model is executed) and Transitions (the connections between Activity
Definitions). The generic entity handling functions defined above can be applied to modify the contents of
aprocess model. A standard set of such entities, which is obtained from the WM C Process Definition
Specification document is described in the next section

Version 2.0 Page 159 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.3.1 WMOpenWorkflowDefinition

NAME

WM OpenW or kflowDefinition - Prepares for editing of workflow definition entities (i.e., on the
Enactment Service scope level).

DESCRIPTION

This command tell the Enactment Service to prepare for editing of workflow definition entitiesit controls.
Thisisthe starting point for getting all of the entities that compose workflow definitions. This entity will
form the scoping entity for most of the requests for further entities controled by the Enactment Service.

WMTEr r Ret Type WMOpenWor kf | owDef i nition (

in WMIPSessi onHandl e psessi on_handl e,
in WMTText name(NAVE_STRI NG_S| ZE)
in WMT Text scope(NAME_STRI NG_SI ZE)
out WMTPENtity wor kf | ow_definition_handl e
)
Argument Description
psession_handl e Pointer to the structure with the session information created by a call
to WM Connect.
name Identifier of the editing context
scope o Scope of editing context
wor kf 1 ow_definition_handle Handle of the entity representing the workflow editing context. This

entity will be used as scoping entity for subsequent editing on
entities owned by the Enactment Service. The entity has type
‘workflow definition’, name taken from the second input parameter,
and no additional attributes.

ERROR RETURN VALUE
W _SUCCESS

Version 2.0 Page 160 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.3.2 WM CloseWorkflowDefinition

NAME

WM CloseW or kflowDefinition - Allows the system to free up any resources that are maintained to handle
reguests for entities within theEnactment Service.

DESCRIPTION

WMTEr r Ret Type WMCl oseWor kf | owDef i ni ti on(
in WMIPSessi onHandl e psession_handl e,

in WMIPEntity wor kf | ow_definition_handl e
)
Argument Description
psession_handl e Pointer to the structure with the session information created by a call
S to WM Connect.
wor kf 1 ow_definition_handle Pointer to an entity structure which represents the contents of the

Enactnemtn Service. It isassumed that all entities within the scope
of this context become inaccessible once the workflow definition is
closed.

ERROR RETURN VALUE

WM _SUCCESS

Version 2.0 Page 161 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.3.3 WM CreateProcessDefinition

NAME
WM CreateProcessDefinition - creates a new process definition
DESCRIPTION

Creates an entity for a new empty process definition within the system. The empty process definition can

then have entities created within it.

WMTEr r Ret Type WWCr eat ePr ocessDefini tion(
in WMIPSessi onHandl e psession_handl e,
out WMTPProcDef| D pproc_def_id

)

Argument Description
psession_handl e Pointer to the structure with the session information created by acall to
_ WM Connect.
pproc_def _id Pointer to the new process definition id for the process definition to create.

ERROR RETURN VALUE
W _SUCCESS

Version 2.0 Page 162 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.3.4 WM DeleteProcessDefinition

NAME
WM DeletePr ocessDefinition - deletes a process definition
DESCRIPTION

DELETES a process definition from the scope defined by the current session.
WMTEr r Ret Type WWDel et ePr ocessDef i nition(
in WMIPSessi onHandl e psession_handl e,

in WMIPProcDef| D pproc_def_id
)

Argument Description

psessi on_handl e Pointer to the structure with the session information created by acall to
_ WM Connect.

pproc_def _id Pointer to the process definition to be deleted

ERROR RETURN VALUE
W _SUCCESS

Version 2.0 Page 163 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.3.5 WM OpenProcessDefinition

NAME
WM OpenProcessDefinition - Prepares for editing of a process model.
DESCRIPTION

This command tell the Enactment Service to prepare for editing of the specified process model. Thisisthe
starting point for getting all of the entities that compose the process definition itself. This entity will form
the scoping entity for most of the requests for further entities within the process definition.

WMTEr r Ret Type WMOpenProcessDefinition (

in WMIPSessi onHandl e psessi on_handl e,
in WMTPPr ocDef i nition proc_definition
out WMTPENtity proc_nodel _handl e
)
Argument Description
psession_handl e Pointer to the structure with the session information created by a call to
WM Connect.
proc_definition Process Definition to be edited

proc_nodel _handle Handle of the entity representing the process model. This entity will be used as
scoping entity for subsequent editing on the process definition

ERROR RETURN VALUE
W _SUCCESS

Version 2.0 Page 164 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

11.3.6 WM CloseProcessDefinition

NAME

WM ClosePr ocessDefinition - Allows the system to free up any resources that are maintained to handle
reguests for entities within the process definition.

DESCRIPTION

WMTEr r Ret Type WMCl oseProcessDefinition(
in WMIPSessi onHandl e psession_handl e,

in WMIPEntity proc_nodel _handle
)

Argument Description
psession_handl e Pointer to the structure with the session information created by a call to
WM Connect.

proc_nodel _handle pojnter to an entity structure which represents the contents of the process
definition. It isassumed that all entities within the scope of this process
definition become inaccessible once the process definition is closed.

ERROR RETURN VALUE
W _SUCCESS

11.4 Standard Process Modelling Entity Types

The following describes the standard entity types that should be supported by every Workflow Engine and
their respective attributes (mandatory and optional); specific implementations may have additional types
and additional attributes for each type. The types are ProcessDefinition, ActivityDefinition, Transition,
Participant, Application and ProcessData. The entity types and their attributes are taken from the WfMC
specification of the Process Definition Interface, which describes the Workflow Process Definition
Language (WPDL); please refer to this document for further details. Some changes have been made to
adjust the attribute names used by WPDL to those used in the Workflow Client Application Interface
specification.

11.4.1 Additional Data Types
typedef struct

WWTText name[NAME_STRI NG_SI ZE] ;
} WMTNare;

typedef struct

WWTText dat e[NAVE_STRI NG_SI ZE] ;
} WMTDat e;

typedef struct

WMTI nt 32 durati on;
}WMTDur at i on;

typedef struct

WMTI nt 32 cost ;
} WMTCost ;

typedef struct

WMT Text docunent ati on[1024] ;
} WMIDocunent at i on;

Version 2.0 Page 165 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

typedef struct

WMT Text
} WMICondExpr essi on;

typedef struct

WMT Text
} WMTPar t Expr essi on;

typedef struct

WMT Text

} WMTAppl i cati onSpec;

expr essi on[256] ;

/1 Condition expresson.

expr essi on[256] ;
/] Participant expresson.

expr essi on[256] ;
/1 Application identification. To be refined...

01-October-96

To be refined using expression grammar

To be refined using expression grammar

Attribute structure used by ProcessData entity type to define complex data structures; attribute value might
hold ProcessDatal D if typeis COMPLEX, default value otherwise.

typedef struct

WMT Text
WMT| nt 32
WMT| nt 32
WMTPText
}JWMTAt tri but e;

attri but e_nanme[NAVE_STRI NG_SI ZE] ;
attribute_type;

attribute_Il ength;
pattribute_val ue;

11.4.2 Process Modedl Entity Type

The entity of type ProcessDefinition represents a process model, or process definition. The following list
defines the mandatory and optional attributes of this entity type.

/1 type of the attribute
/1 length of the attribute value
/] pointer to the attribute val ue

Attribute Name M/O Data Type Description

Processid M WMTProcModelID Process identifier

ProcessName M WMTName Process name

State M WMTProcDef State Status of the workflow process. Recommended
values are: test, released, pending, resumed.

CreationDate M WMTDate Creation date of workflow process definition.

Description O string Textual description of the workflow process
definition.

Version ®) string Version of this workflow process definition.

Author O WMTName Name of the author of this workflow process
definition.

Responsible O WMTWf|Participant | workflow participant, who is responsible for this
workflow process (usually a human)

ValidFromDate O WMTDate The date at which process definition becomes
valid. Empty string means system date.

VaidToDate O WMTDate The date at which the process definition becomes
invalid. Empty string means unlimited validity.

Classification O string Classification of process definition (e.g., finance,
sales, manufacturing etc.).

OrgModelReference | O string Reference to an external organisational model

InputParameters O WMTDatalD Reference to the data structure describing the data
passed to the process when it is started

OutputParameters O WMTDatalD Reference to the data structure describing the
parameters ‘produced’ by the process definition

Duration O WMTDuration Expected duration for time management purposes
(e.g. starting of an escalation procedure etc.).

Version 2.0 Page 166 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

01-October-96

Attribute Name M/O Data Type

Description

Cost 0] WMTCost

Average cost for cost management purposes (used
within analysis environment).

WorkingTime O WMTDuration

Describes the amount of time the performer of the
activity needs to perform the task (working timeis
needed for analysis purposes and is provided by
the evaluation of runtime parameters).

WaitingTime O WMTDuration

Describes the amount of time which is needed to
prepare the performance of the task (waiting time
is provided by the analysis environment and may
be updated by the runtime environment).

Documentation (@]

WM TDocumentation

Documentation for the activity; might also
ccontain areference (e.g., path- and filename) for
a helpfile or a description file of the activity.

Icon O string

Identification (e.g., path- and filename) of an icon
to represent the activity.

11.4.3 Activity Definition Entity Type

The entity of type ActivityDefinition represents a process activity or node in a process model. This entity

is scoped by a process model entity.

The following list defines the mandatory and optional attributes of this entity type.

Attribute Name M/O | Data Type

Description

ActivityDefld M

WMTACtivitDefID

| dentification of the activity
definition

ActivityName M WMTName

Text string identifier

ParentProcessld M

WMTProcessModel ID

Identification of the process this
activity belongs to

Description ®) string

Short description of the activity.

Characteristic O string

Identifies the start activities
(BEGIN) resp. the end activities
(END) of the process. Other
activites are marked NORMAL.

Instantiation O string

ONCE or MULTIPLE. Definesthe
capability of an activity to be
activated once or many times.

StartMode O string

AUTOMATIC or MANUAL.
Describes whether execution of an
activity istriggered by the system or
explicitly by the end user.

FinishMode O string

AUTOMATIC or MANUAL.
Describes how the system operates
at the end of the activity. Manual
means that the end user formally
completes the activity, automatic
implies an automatic return when
the invoked application finishes
control.

Version 2.0

Page 167 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

Attribute Name

M/O

Data Type

Description

Abilities

List of strings

List of ahilities of the activity;
abilities include the following:
suspendable - activity may be
suspended during runtime
repeatable - activity may be
repeated during runtime
replaceable - activity may be
substituted at runtime
skipable - activity may be skipped
at runtime

deligateable - activity may be
skipped at runtime

Priority

WMTInt32

An integer value, that describes the
priority of this activity (i.e.: 0, 1, ...

- the higher the value the higher the
priority)

Implementation

string

Keyword APPLICATION if the
activity isimplemented by one or
more Workflow Applications;
Keyword PROCESS if the
application is implemented by
another Workflow Process

Binding

string

Implementation binding:
IMMEDIATE or LATE

Applicationlmplementation

WMTApplicationSpec

| dentifies the Workflow Application
that implements the activity if
Implementation is set to
APPLICATION

Workflowlmplementation

WMTProcDefld

| dentifies the Workflow Process
that implements the activity if
Implementation is set to PROCESS

Participants

WM TPartExpression

Expression describing the set of
particpants to be assigned to the
activity

PreCondition

WMTCondExpression

A logical expression based on
workflow process relevant data; the
pre-condition is checked before
execution of the activity.

PostCondition

WMTCondExpression

The post condition isalogical
expression and symmetric to the pre
condition; the post condition is
checked when the activity is
finished.

I nputParameters

WMTDatal D

Reference to the data structure
describing the process relevant data
passed to the activity

OutputParameters

WMTDatal D

Reference to the data structure
describing the parameters
‘produced’ by the activity
definition

Version 2.0

Copyright © 1993, 1996, The Workflow Management Coalition

Page 168 of 178

01-October-96

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Attribute Name M/O | Data Type Description

Duration O WMTDuration Expected duration (working time
and waiting time) for simulation
purposes.

Cost O WMTCost Average cost for smulation
puUrposes.

WorkingTime O WMTDuration Average working time for
simulation purposes.
WaitingTime O WMTDuration Average waiting time for
simulation purposes.
Documentation O WM TDocumentation Documentation for the activity;
might also ccontain a reference
(e.g., path- and filename) for a
helpfile or a description file of the
activity.

Icon O string Identification (e.g., path- and
filename) of an icon to represent the
activity.

11.5 Transition Definition Entity Type

The entity of type Trasition represents a transition or connector between nodes of a workflow model. This
entity is scoped by a process model entity.
The following list defines the mandatory and optional attributes of this entity type.

Attribute Name | M/O |DataType Description

Transitionld M WMTTransitionID

Name M WMTName String Identifier

ParentProcessid | M WMTProcessModelID | Identification of the process this transition
belongs to

Description ®) string Textual Description

From M WMTEntitylD Id of the souce entity for the transition

To M WMTEntitylD Id of the target entity of the transition

Condition ®) WMTCondExpression | Transition condition

11.5.1.1 WMAddTransition
NAME
WMAddTransition - Adds atransition definition to a process model.

DESCRIPTION

This command will return atransition definition entity owned by the process definition that is passed as
second parameter, connecting the activity definition entities passed as third and fourth parameter.

WMTEr r Ret Type WMADdTransi tion (

Version 2.0 Page 169 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

=}

WMIPSessi onHandl e psessi on_handl e,
WMTPPr ocMbdel | D pproc_nodel _id,

=}

in WMIPAct Def | D psource_act _def _id,
in WMIPAct Def | D ptarget _act _def_id,
out WMIPEntity entity_handl e
)
Argument Description
psession_handl e Pointer to the structure with the session information created by a call to
WM Connect.
pproc_rodel _i d Pointer to the process model owning the new transition

psource_act_def_id pointer to the source activity definition of the transition
ptarget_act_def_id pointer to the target activity definition of the transition

entity _handle Pointer to a buffer which will receive the structure which represents a transition
ERROR RETURN VALUE
WM _SUCCESS

11.5.2 Process Data Entity Type

The entity of type ProcessData represents process relevant data that are passed through a workflow
process. It extends the basic WM TAttribute type in that it might be used to define complex data structures.
A separate entity is defined to allow for re-use of data structures. This entity is scoped by a process model
entity.

Thisis how user defined attributes make it into a workflow process model; the Process Data entity typeis
used to define the input and output data of a process model and of an activity definition. During process
execution, the attributes defined here can be querried using the functions providing access to the attributes
of the corresponding instance.

The following list defines the mandatory and optional attributes of this entity type.

Attribute Name M/O | Data Type Description

ProcessDatald M WMTProcessDatal D Unique Identifier of the data
structure

ParentProcessid M WMTProcessModelID Identification of the process this
activity belongs to

Name M WMTName Text string identifier

Description ®) string Textual Description.

Attributes M List of WMTALtribute Attributes that make up the data

structure; can be single attribute, list
of elemental attributes (i.e., of type
string, integer, float, boolean or
reference), or contain references to
other data structures - defining a
complex data structure.

11.5.2.1 WMAddProcessDataAttribute

NAME
WM AddProcessDataAttribute - Adds an attribute to the list of attributes that define the data structure.
DESCRIPTION

Version 2.0 Page 170 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

WMTEr r Ret Type WVADdProcessDat aAttri bute (
in WMIPSessi onHandl e psessi on_handl e,
in WMIPProcMdl D pproc_nodel _id,
in WMIPProcDat al D pproc_data_id,
in WMIPAttrName pattribute_nane,
in WM nt32 attribute_type,
in WMII nt32 attribute_l ength,
i WMTPText pattribute_val ue)

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.

pproc_rodel _i d Pointer to a structure containing the process model entity ID.

pproc_data_id Pointer to a structure containing the process data definition identification for
which the attribute will be assigned.

pattribute_name Pointer to the name of the attribute.

attribute_type Type of the attribute.

attribute_length Length of the attribute value.

pattribute_val ue Pointer to a buffer area provided by the client application where the attribute

value will be placed. Can be identifier of another process data entity.

ERROR RETURN VALUE
W _SUCCESS

11.5.2.2 WMRemoveProcessDataAttribute

NAME

WM RemoveProcessDataAttribute - Removes an attribute from the list of attributes that define the data
structure.

DESCRIPTION

WMTEr r Ret Type WVRenoveProcessDataAttribute (

in WMIPSessi onHandl e psessi on_handl e,
i WMTPPr ocMbdl D pproc_nodel _i d,
WMTPPr ocDat al D pproc_data_i d,
WMTPAt t r Name pattri bute_nane)

3‘3‘3

Argument Name Description

psession_handl e Pointer to a structure containing information about the context for this action.

pproc_rodel _i d Pointer to a structure containing the process model entity ID.

pproc_data_id Pointer to a structure containing the process data definition identification for
which the attribute will be assigned.

pattribute_name Pointer to the name of the attribute. Must be uique within the data structure.

ERROR RETURN VALUE
WM _SUCCESS

11.5.2.3 Participant Entity Type

The entity of type Participant represents a workflow participant that can be assigned to a process or an
activity; a participant can be an individual, an organization unit or an abstract resource such asa
machine. This entity might be scoped by a Process Model or by the Enactment Service. The following list
defines the mandatory and optional attributes of this entity type.

Version 2.0 Page 171 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Attribute Name M/O Data Type Description

Participantld M WM TWf|Participant Unique Id of the participant

Name M WMTName Text string identifier for a
performer of an activity

Description O string Textual description of a
workflow participant.

Type M WMTParticipantType Type of aworkflow participant

(organisational _unit, human,
role, ressource)

Capacity O integer Number of parallel activities
the workflow participant is
able to manage (for simulation
purposes)

Cost O WMTCost Cost (no currency) for
simulation purposes
PrepareTime O WMTDuration Time to set up the workflow
participant (for simulation
purposes)

Strategy O string strategy the workflow
participant handles the
activities (for simulation

purposes)
fifo Il firstin,
first out
| lifo /lastin, first
out
| f /I shortest job
first
[1jf /l longest job
first, default: fifo
<type related M see below type related information, that
information> defines additional attributes

depending on the workflow
participant type

Type related information for type OrganizationUnit:

Attribute Name M/O | Data Type Description

Function O string Description of atask or competence of
the Organization Unit

Manager ®) WMTWf|ParticipantlD | Manager of the Organization Unit

Superiors O List of List of direct Superiors of the

WMTWf|ParticipantID | Organization Unit, usually other
Organization Units

PersonList O List of List of human resources that belong to
WMTWf|ParticipantlD | the Organization Unit

Type related information for type Human:

Version 2.0 Page 172 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2)

Attribute Name M/O | Data Type Description

UserlD O] WMTName User Id

SurName ®) string Particpant’ s last name

ForeName ®) string Participant’ s first name

PhoneNumber ®) string

FaxNumber ®) string

Email ®) string

X400 ®) string X.400 identification

OrgUnits O List of List of Organization Units the
WMTWflParticipantID | participant belongs to

Alternates O List of List of participants that may substitute
WM TWf|Participant|D | the participant

Roles O List of List of Rolesthat are played by the

WM TWf|Participant! D

participant

Type related information for type Role:

Attribute Name M/O | Data Type Description

Function O string Description of atask or competence of
therole

Coordinator O WMTWflParticipantlD | Coordinator of the Role, usualy a
human participant

PersonList O List of List of human resources that belong to

WM TWf|Participant! D

the Role

11.5.2.4 Application Entity Type

The entity of type Application represents a program or tool that support execution of a process. This entity

type can be scoped by a process model or by the Enactment Service. The following list defines the
mandatory and optional attributes of this entity type.

Attribute Name M/O | Data Type Description

Applicationld M WMTApplicationlD

Name M WMTName Logical tool name to be used for reference

Description ®) string Textual description of the application

Tool Name O string Name of invoked application; may contain
additional information, such as the
application’s location (path).

Parameters O string Parameters to be passed to the application on
startup (‘ command line parameters’); may
refer to process relevant data; more specific
definition to be provided in alater version of
this spec.

InputParameters [O WMTProcessDatalD | The, in" parameters for the invoked
application

OutputParameters | O WMTProcessDatalD | The ,,out* parameters of the invoked
application

Version 2.0

Page 173 of 178

Copyright © 1993, 1996, The Workflow Management Coalition

01-October-96

Workflow Management Application Programming Interface (Interface 2) 01-October-96

12. Appendix G: States

The following describes above a set of standard valid states for each of the major workflow objects defined
in this document. States are organized into several levels of granularity, lower level states refining higher-
level ones. An implementation of the Enactment Service might choose to support states on any level of
granularity, omit states and add additional states to the list defined below. A state for a particular
workflow aobject can be identified by its name only or by specifying its full name including its super-state
parents using dot notation; for examples see the section on Process Instance states below.

12.1 Process Instance States

Thetop level of states for a Process Instance distinguishes two states, open and closed. The open state has
two sub-states, running and notRunning; notRunning in turn has two sub-states, notStarted and
suspended The following list describes the states in detail:
open - the Process Instance is being enacted
open.running - the Process Instance is executing
open.notRunning - the Process Instance is temporarily not executing
open.notRunning.notStarted - the Process Instance has been created, but was not started yet
open.notRunning.suspended - execution of the Process I nstance was temporarily suspended
closed - enactment of the Process Instance has been finished
closed.aborted - enactment of the Process Instance has been aborted by a user (see the specification of
WM ADortProcessl nstance for a definition of abortion in contrast to termination)
closed.terminated - enactment of the Process Instance has been terminated by a user (see the
specification of WM TerminateProcess|nstance for a definition of termination in contrast to abortion)
closed.completed - enactment of the Process Instance has completed normally (i.e., was not forced by a
user)

An implementation might decide to support refinement of states to a certain level only or omit certain
states; valid sets of states include for example:

open and closed
notRunning, running and closed
notStarted, running, completed and terminated

The following diagram shows the states and potential state-transitions; transitions are shown for the
bottom-level states only, transitions between the higher-level states can be deduced from that easily; e.g.,
there is atransition from open to closed or from notRunning to running, but no transition backwardsin
both cases.

Version 2.0 Page 174 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

TN

I

Sa

» aborted

notStarted I

\\ <

=
j 1
Suspended] W

notRunning —

/A///

open closed

:I N
running \ —~— completed I

Here is ashort discussion of the various state-transitions:
When a Process Instance is created it will take itsintial state, which is open.notRunning.notStarted (or
just open, or open.notRunning depending on the level of granularity supported)
Transitions can be made from notRunning states to the running state; transitions from the running to
the notRunning super-state can be made to the suspended sub-state only.
When enactment of a Process Instance is finished, its state will take one of the flavours of the closed
state, depending on the way of ending enactment (normally completed, terminated or aborted). The
completed state can only be reached from the running state since it represents normal completion of
the Process Instance; the other closed sub-states are reached via the WM AbrtProcessl nstance or
WM TerminateProcess| nstance operations.
The closed stateisafina state, i.e., thereisno transition from a closed state to an open state.

12.2 Activity Instance States

Thetop level of statesfor an Activity Instance distinguishes two states, open and closed. The open state
has three sub-states, running, notRunning; and suspended. The following list describes the states in detail:
open - the Activity Instance is active
open.running - the Activity Instance is executing
open.notRunning - the Activity Instance is ready, but has not been started yet
open..suspended - execution of the Activity Instance was temporarily suspended
closed - enactment of the Activity Instance has been finished
closed.aborted - enactment of the Activity Instance has been aborted, probably due to abortion of the
owning Process Instance (see the specification of WM AbortProcessinstance for a definition of abortion
in contrast to termination)
closed.terminated - enactment of the Activity Instance has been terminated , probably due to
termination of the owning process instance (see the specification of WM TerminateProcess| nstance for
adefinition of termination in contrast to abortion)
closed.completed - enactment of the Activity Instance has completed normally (i.e., was not forced by
auser or by a state change of its owning Process Instance)

Version 2.0 Page 175 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

The following diagram shows the states and potential state-transitions; transitions are shown for the
bottom-level states only, transitions between the higher-level states can be deduced from that easily.

running I
/ A

— = notRunning I » aborted I
\‘\

suspended I | terminated I
—

open closed

—~— completed

/]

~Sa

/
vea

|

Here is ashort discussion of the various state-transitions:
When an Activity Instance is created it will take itsintial state, which is open.notRunning
Transitions between the notRunning and the suspended states are in general initiated by the Enactment
Service, triggered by a corresponding state change of the owning Process Instance; they could aso be
triggered via the WM ChangeA ctivityl nstanceState operation.
Transitions between the notRunning and the running state might be initated by the Application Client
user viathe WM GetWorkitem operation, but this is up to the specific Enactment Service; otherwise
the transition is either initiated by the Enactment Service or by the Application Client user viathe
WM ChangeWorkitemState or WM ChangeA ctivityState operation.
Transitions between the running and the suspended state are in general initiated by the Enactment
Service as aresult of a corresponding state change of the owning Process Instance; an Enactment
service might allow this transition to be performed as aresult of the WM ChangeWorkitemState or via
the WM ChangeA ctivitylnstanceState operation also.
When enactment of an Activity Instanceis finished it’s state will take one of the flavours of the closed
state, depending on the way of ending enactment (normally completed, terminated or aborted). The
completed state can only be reached from the running state since it represents normal completion of
the Activity Instance.
The closed stateisafina state, i.e., thereisno transition from a closed state to an open state.

12.3 Workitem States

Thetop level of states for a Workitem distinguishes two states, open and closed. The open state has three
sub-states, running, notRunning; and suspended. The following list describes the states in detail:
- open - the Workitem is active
open.running - the Workitem is executing
open.notRunning - the Workitem is assigned to a participant, but has not been started yet
open..suspended - execution of the Workitem was temporarily suspended
closed - enactment of the Workitem has been finished

Version 2.0 Page 176 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

closed.aborted - enactment of the Workitem has been aborted, probably due to abortion of the owning
Process Instance (see the specification of WM AbortProcesslnstance for a definition of abortion in
contrast to termination)

closed.terminated - enactment of the Workitem has been terminated , probably due to termination of
the owning process instance (see the specification of WM TerminateProcessinstance for a definition of
termination in contrast to abortion)

closed.completed - enactment of the Workitem has completed normally (i.e., was not forced by a user
or by a state change of its owning Process Instance)

The following diagram shows the states and potential state-transitions; transitions are shown for the
bottom-level states only, transitions between the higher-level states can be deduced from that easily.

—~— completed

/ A \\A
__,E > »| aborted I
\

T

\‘\ <
suspended I | terminated I
—

open closed

/]

/

|

Here is ashort discussion of the various state-transitions:
When an Workitem is created it will take itsintial state, which is open.notRunning
Transitions between the notRunning and the suspended state are in general initiated by the Enactment
Service as aresult of a corresponding state change of the owning Process Instance; an Enactment
service might decide to allow this transition to be performed via the WM ChangeWorkitemState
operation also.
Transitions between the notRunning and the running state might be initated by the Application Client
user viathe WM GetWorkitem operation, but this is up to the specific Enactment Service; otherwise
the transition is either initiated by the Enactment Service or by the Application Client user viathe
WM ChangeWorkitemState operation or as a result of a WM ChangeA ctivitylnstanceState on the
associated Activity Instance.
Transitions between the running and the suspended state are in general initiated by the Enactment
Service as aresult of a corresponding state change of the owning Process Instance; an Enactment
service might decide to allow this transition to be performed via the WM ChangeWorkitemState
operation also.
When enactment of an Workitem is finished it’s state will take one of the flavours of the closed state,
depending on the way of ending enactment (normally completed, terminated or aborted). The
completed state can only be reached from the running state (via the WM CompleteWorkitem operation)
since it represents normal completion of the Workitem.
The closed stateisafinal state, i.e., thereisno transition from a closed state to an open state.

Version 2.0 Page 177 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

Workflow Management Application Programming Interface (Interface 2) 01-October-96

Version 2.0 Page 178 of 178
Copyright © 1993, 1996, The Workflow Management Coalition

