
OMG BODTF RFP #2 Submission

Workflow Management Facility

Revised Submission

July 4, 1998

Joint Submission by:

• CoCreate Software
• Concentus
• CSE Systems
• Data Access Technologies
• Digital Equipment Corporation
• DSTC
• EDS
• FileNet Corporation
• Fujitsu Limited
• Hitachi Ltd.
• Genesis Development Corporation
• IBM Corporation
• ICL Enterprises
• NIIIP Consortium
• Oracle
• Plexus - Division of BankTec
• Siemens Nixdorf Informationssysteme
• SSA
• Xerox

OMG Document Number: bom/98-06-07

Copyright (c) 1998, IBM Corporation, CoCreate Software, Concentus, CSE
Systems, Data Access Technologies, Digital Equipment Corporation, DSTC,
FileNet Corporation, Fujitsu Limited, Hitachi Ltd., ICL Enterprises, NIIIP
Consortium, Oracle, Plexus - Division of BankTec, Siemens Nixdorf
Informationssysteme, SSA, Xerox, Genesis Development Corporation, EDS

The companies listed above hereby grant a royalty-free license to the Object
Management Group, Inc. (OMG) for worldwide distribution of this document
or any derivative works thereof, so long as the OMG reproduces the copyright
notices and the below paragraphs on all distributed copies.

The material in this document is submitted to the OMG for evaluation.
Submission of this document does not represent a commitment to implement
any portion of this specification in the products of the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO
BE ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The companies listed above shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the furnishing,
performance or use of this material. The information contained in this
document is subject to change without notice.

This document contains information which is protected by copyright. All
Rights Reserved. Except as otherwise provided herein, no part of this work
may be reproduced or used in any form or by any means-graphic, electronic,
or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems- without the permission of one of the copyright
owners. All copies of this document must include the copyright and other
information contained on this page.

The copyright owners grant member companies of the OMG permission to
make a limited number of copies of this document (up to one per member
company) for their internal use as part of the OMG evaluation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by
government is subject to restrictions as set forth in subdivision (c) (1) (ii) of
the Right in Technical Data and Computer Software Clause at DFARS
252.227.7013.

Preface
This submission is based on standards defined by the Workflow Management
Coalition (WfMC). Founded in 1993, the WfMC is a non-profit, international
organization of workflow vendors, customers and users whose mission is to
promote the use of workflow through the establishment of standards for
software terminology, interoperability and connectivity between workflow
products. With more than 200 members in 25 countries, the Coalition has
quickly become established as the primary standards body for this rapidly
expanding software market.

The technology submitted in this proposal is directly based upon the WFMC
standards for workflow interfaces, which have been available in the public
domain for a number of years (see [3], [4], [6]) and provide a stable base for
the introduction of workflow technology into the OMG architecture. The
WfMC has approved the use of these standards by the submitters of this
proposal. As an industry consortium the WfMC is not able formally to act as
a submitter but fully endorses this submission as a supporter.

In 1996 the WfMC released an OMG IDL binding for its Client Application
Programming Interface and have been developing a similar binding for the
Interoperability interface (see [3], [7]). This submission is based directly on
those bindings.

It is the intention of the submitters of this proposal that there be one
Workflow Management Facility IDL specification endorsed by both the
WfMC and the OMG. In addition to the standards incorporated in this
submission the WfMC is actively engaged in the development of standards in
related areas of workflow management, e.g., specifications for process
definition and organization models. The submitters intend to make such
specifications available to OMG as and when appropriate.

Supporters of this submission include:

• Workflow Management Coalition (WfMC)
• Abbott McCarthy
• Action Technologies
• Baan Company NV
• Computron Software, Inc.
• COSA SOLUTIONS Standardsoftware GmbH
• Eastman Software, Inc.
• Fuego Technology Corp.
• GLS Conseil
• Hatton Blue Ltd.
• Hewlett Packard
• IABG
• IDS Prof. Scheer GmbH
• IMA
• InConcert Inc.
• Meta Software
• Netscape
• Optika Imaging Systems, Inc.
• Sema Group Sae
• SNS Shared Network Systems Inc.
• TDI
• US DoD Defense Information Systems Agency
• Xedoc Software Development, Inc.

Contact Information
Submitters:

CoCreate Software: Dan Matheson, danm@fc.hp.com
Concentus: Robert Casto, casto@concentus-tech.com
CSE Systems: Emma Preininger, empr@csesystems.com
Data Access Technologies: Cory Casanave, cory-c@dataaccess.com
Digital Equipment Corporation: Manfred Koethe, Koethe@kar.dec.com
DSTC: Zoran Milosevic, zoran@dstc.edu.au
EDS: Fred Cummins, cummins@eng.eds.com
FileNet Corporation: Mike Marin, mmarin@filenet.com
Fujitsu Limited: Adel Ghoneimy, adelg@fsc.fujitsu.com
Hitachi Ltd.: Hiroshi Majima, majimahi@soft.hitachi.co.jp
Genesis Development Corporation: Robert Kosakowski, robkoz@gendev.com
IBM Corporation: Marc-Thomas Schmidt, mts@us.ibm.com
ICL Enterprises: Mike Anderson, mja@process.icl.co.uk
NIIIP Consortium: David Zenie, zenie@us.ibm.com
Oracle Corporation: Jim Trezzo, jtrezzo@us.oracle.com
Plexus - Division of BankTec: Richard Hemmerling, hemmerling@plx.com
Siemens Nixdorf Informationssysteme: Franz Klute, klute.pad@sni.de
SSA: Gene Glaudell, gglaudel@ssax.com
Xerox: Van-Si Nguyen, Vansi_Nguyen@wb.xerox.com

Supporters:
Abbot McCarthy: Dennis McCarthy, mccarthy@acm.org
Action Technologies: Raul Medina-Mora, Raul_Medina-Mora@actiontech.com
Baan Company NV: Sjaak Brinkkemper, sbrinkkemper@baan.nl
Computron Software, Inc.: Steve Dworkin, sdworkin@ctronsoft.com
COSA SOLUTONS Standardsoftware GmbH: Thomas Basting, tb@cosa.de
Eastman Software, Inc.: Mordechai Beizer, mordechai.beizer@eastmansoftware.com
Fuego Technology Corp.: Bruno Depascale, bruno@fuegotech.com
GLS Conseil: Gerard SACCONE, gsaccone@gls-conseil.fr
Hatton Blue Ltd.: Jon Iles, jon@hattonblue.com
Hewlett Packard: Ming Chien Shan, shan@hpl.hp.com
IABG: Barbal Wolters, bwolters@iabg.de
IDS Prof. Scheer GmbH: Andreas Kronz, a.kronz@ids-scheer.de
IMA: Kian Saneii, saneiik@ima-inc.com
InConcert Inc.: Sunil Sarin, sarin@inconcertsw.com
Meta Software: Robert Shapiro, MetaRobert@aol.com
Netscape: Keith Swenson, kswenson@netscape.com
Optika Imaging Systems, Inc.: Robert Latham, rlatham@optika.com
Sema Group Sae: Agustin Gonzales-Quel, agonzales@sema.es
SNS Shared Network Systems Inc.: Rob Allen, rob.allen@uk.sns.ca
TDI: Nan Xiong, nan@tdiinc.com
US DoD Defense Information Systems Agency: Dan Wu, wud@ncr.disa.mil
Workflow Management Coalition: wfmc@wfmc.org
Xedoc Software Development, Inc.: J. Matthew Pryor, jmp@xedoc.com

Table of Contents
Introduction and Overview 7

Guide to the Submission 7
Scope 7
Design Rationale 7

Workflow 8
Workflow Management Systems 9
The Workflow Reference Model 11

Proof of Concept 12
Resolution of Mandatory RFP Requirements 13

Workflow Metamodel 13
Interfaces for Workflow Enactment 13
Workflow Monitoring 14
Workflow Audit Trail 14
Nesting of Workflows 15

Resolution of Optional Requirements 16
Definition of Workflow Schemas 16
Nesting of Workflow Schemas 16
Support for Ad-hoc Workflows 16
Level-of-service Parameters 17

Discussion Issues 17
Transactions 17
Archiving of Workflow Instances 17
Resource Selection 18
Computing Resource Management 18
Workflow Integrity 18
Security of the Workflow Management Facility 19
Relationship to Envisioned OMG Technology 20
Virtual Enterprise 21

Relation to Existing Standards 22
Workflow Management Coalition 22
WfMC Application Client specification 22
WfMC Audit Data specification 22
WfMC Interoperability specification 22

References 22
Specification 24

Overview 24
Workflow Interfaces 24
Process Enactment 25
Process Monitoring 26

WorkflowModel module 27
Data Structures 27
Exceptions 28

Patterns 30
WfRequester 30

IDL 31
Relationships 31
Operations 32

WfExecutionObject 32
IDL 32
Attributes 34
States 36
Relationships 38
Operations 38

WfProcessMgr 40
IDL 40
Attributes 42
Relationships 43
States 44
Operations 44

WfProcess 45
IDL 46
Attributes 47
Relationships 48
Operations 49
WfProcessIterator 49

WfActivity 49
IDL 51
Attributes 52
Relationships 53
Operations 53
WfActivityIterator 54

WfAssignment 54
IDL 54
Relationships 55
States 56
WfAssignmentIterator 56

WfResource 56
IDL 56
Attributes 57
Relationships 58
Operations 58

WfEventAudit 59
IDL 59
Attributes 60

7/4/98 Joint Workflow Management Facility - Revised Submission -7

Relationships 62
WfEventAuditIterator 62
Publication via Notification Service 62

WfCreateProcessEventAudit 63
IDL 63
Attributes 64
Publication via Notification Service 64

WfStateEventAudit 65
IDL 65
Attributes 65
Publication via Notification Service 65

WfDataEventAudit 66
IDL 66
Attributes 66
Publication via Notification Service 67

WfAssignmentEventAudit 67
IDL 67
Attributes 68
Publication via Notification Service 68

The WfBase Module 69
Data Types 70
Exceptions 71

Base Business Object Interfaces 72
BaseBusinessObject 72
BaseEntity 72
BaseProcess 72
BaseBusinessEvent 72

BaseIterator 73
IDL 73
Attributes 73
Operations 74

Interface Usage Example 75
Additional Information 77

Summary of Optional versus Mandatory Interfaces 77
Proposed Compliance Points 77
Changes or Extensions to Adopted OMG Specifications 78
Complete IDL Definitions 78

Consolidated IDL 78
CDL 87

1-8 Joint Workflow Management Facility - Revised Submission 7/4/98

1

Introduction and Overview 1
This document specifies interfaces for interaction with the execution environment of a
Workflow Management Facility. The specified interfaces allow for a broad spectrum
of implementations, including implementations based on existing workflow engines.

1.1 Guide to the Submission

The submission is structured as follows:

Section 1 provides an overview of the specification. It includes a brief introduction to
Workflow in general and Workflow Management in particular and describes the scope
of the submission. It also addresses RFP requirements and discussion issues.

Section 2 provides a detailed description of the proposed specification.

Section 3 provides additional information including conformance criteria and a
complete list of the IDL for the specification.

1.2 Scope

This submission addresses the requirements for interoperability between different
workflow object implementations in a CORBA environment. The interfaces specified
are intended to be sufficiently general to support a wide range of application domains.
These domains include healthcare, electronic commerce, manufacturing, insurance,
finance, transportation, printing and publishing.

1.3 Design Rationale

Workflow Management (WfM) is a fast evolving technology which is increasingly
being exploited by businesses in a variety of industries. Its primary characteristic is the
automation of processes involving combinations of human and machine-based
activities, particularly those involving interaction with information technology (IT)
applications and tools. Although its most prevalent use is within the office
environment in staff intensive operations such as insurance, banking, legal and general
administration, it is also applicable to complex, dynamic environments such as design,
engineering, and manufacturing.

Many software vendors have WfM products available today with WfM technology and
there is a continuous introduction of more products into the market. The availability of
a wide range of products within the market has allowed individual product vendors to
focus on particular functional capabilities and users have adopted particular products to

7/4/98 Joint Workflow Management Facility - Revised Submission 1-9

1

meet specific application needs. However, there are no object-oriented frameworks to
enable different WfM products and workflow aware applications to work together,
which is resulting in incompatible "islands" of process automation.

This Workflow Management Facility specification addresses this problem, by
introducing a workflow framework and interfaces that have been developed by a large
group of workflow vendors and users under the umbrella of the Workflow
Management Coalition (WfMC). This specification is based on the WfMC reference
model and architecture.

It has been recognized that all WfM products have some common characteristics,
enabling them potentially to achieve a level of interoperability through the use of
common standards for various functions. The WfMC has been established to identify
these functional areas and develop appropriate specifications for implementation in
workflow products. It is intended that such specifications will enable interoperability
between heterogeneous workflow products and improved integration of workflow
applications with other IT services such as electronic mail and document management,
thereby improving the opportunities for the effective use of workflow technology
within the IT market, to the benefit of both vendors and users of such technology.

This section describes the basic functionality of the Workflow Facility. Most of this
information is extracted from the WfMC Workflow Reference Model document [1].

1.3.1 Workflow

Workflow is concerned with the automation of procedures where information and tasks
are passed between participants according to a defined set of rules to achieve, or
contribute to, an overall business goal. Whilst workflow may be manually organized,
in practice most workflow is normally organized within the context of an IT system to
provide computerized support for the procedural automation.

Workflow is often associated with Business Process Re-engineering, which is
concerned with the assessment, analysis, modeling, definition and subsequent
operational implementation of the core business processes of an organization (or other
business entity). Although not all BPR activities result in workflow implementations,
workflow technology is often an appropriate solution as it provides separation of the
business procedure logic and its IT operational support, enabling subsequent changes
to be incorporated into the procedural rules defining the business process. Conversely,
not all workflow implementations necessarily form part of a BPR exercise, for
example implementations to automate an existing business procedure.

1.3.2 Workflow Management Systems

A Workflow Management System provides procedural automation of a business
process by management of the sequence of work activities and the invocation of
appropriate human and/or IT resources associated with the various activity steps.

An individual business process may have a life time ranging from minutes to days (or
even months and years), depending upon its complexity and the duration of the various
constituent activities.

1-10 Joint Workflow Management Facility - Revised Submission 7/4/98

1

At the highest level, all WfM systems may be characterized as providing support in
three functional areas:

• the Build-time functions, concerned with defining, and possibly modeling, the
workflow process and its constituent activities

• the Run-time control functions concerned with managing the workflow processes in
an operational environment and sequencing the various activities to be handled as
part of each process

• the Run-time interactions with human users and IT application tools for processing
the various activity steps

The diagram below illustrates the basic characteristics of WfM systems and the
relationships between these main functions

Figure 1-1 Workflow System Characteristics

Build-time Functions

The Build-time functions are those which result in a computerized definition of a
business process. During this phase, a business process is translated from the real
world into a formal, computer prosecutable definition by the use of one or more
analysis, modeling and system definition techniques. The resulting definition is
sometimes called a process model, a process template, process meta data, or a process
definition. For purposes of this document, the term 'process definition' will be used.

A process definition comprises a number of discrete activity steps, with associated
computer and/or human operations and rules governing the progression of the process
through the various activity steps. The process definition may be expressed in textual
or graphical form or in a formal language notation. Some workflow systems may allow
dynamic alterations to process definitions from the run-time operational environment,
as indicated by the feed-back arrow in the above diagram.

Process

Definition

Build Time

Business Process Analysis,

Modelling & Definition Tools

Run Time

Workflow Enactment Service

Process changes

Process Instanciation

& Control

Applications

& IT Tools

Interaction with

Users & Application Tools

Process Design

& Definition

7/4/98 Joint Workflow Management Facility - Revised Submission 1-11

1

This Workflow Management Facility specification does not addressed the build-time
functions. The specification concentrates on the run-time aspects of WfM.

 Run-time Process Control Functions

At run-time the process definition is interpreted by software which is responsible for
creating and controlling operational instances of the process, scheduling the various
activities steps within the process and invoking the appropriate human and IT
application resources, etc. These run-time process control functions act as the linkage
between the process as modeled within the process definition and the process as it is
seen in the real world, reflected in the runtime interactions of users and IT application
tools. The core component is the basic workflow management control software,
responsible for process creation & deletion, control of the activity scheduling within an
operational process and interaction with application tools or human resources. This
WfM software is often distributed across a number of computer platforms to cope with
processes which operate over a wide geographic basis.

Run-time Activity Interactions

Individual activities within a workflow process are typically concerned with human
operations, often realized in conjunction with the use of a particular IT tool (for
example, form filling), or with information processing operations requiring a particular
application program to operate on some defined information (for example, updating an
orders database with a new record). Interaction with the process control software is
necessary to transfer control between activities, to ascertain the operational status of
processes, to invoke application tools and pass the appropriate data, etc. There are
several benefits in having a standardized framework for supporting this type of
interaction, including the use of a consistent interface to multiple workflow systems
and the ability to develop common application tools to work with different workflow
products.

Distribution & System Interfaces

The ability to distribute tasks and information between participants is a major
distinguishing feature of workflow runtime infrastructure. The distribution function
may operate at a variety of levels (workgroup to inter-organization) depending upon
the scope of the workflows; it may use a variety of underlying communications
mechanisms (electronic mail, messaging passing, distributed object technology, etc.).
An alternative top-level view of workflow architecture which emphasizes this
distribution aspect is shown in the diagram below.

1-12 Joint Workflow Management Facility - Revised Submission 7/4/98

1

The workflow enactment service is shown as the core infrastructure function with
interfaces to users and applications distributed across the workflow domain. Each of
these interfaces is a potential point of integration between the workflow enactment
service and other infrastructure or application components.

Figure 1-2 Distribution within the WfM Service

The flow of work may involve the transfer of tasks between different vendors
implementations of the workflow management facility to enable different parts of the
business process to be enacted on different platforms or sub-networks using particular
products suited to that stage of the process. In this scenario the flow within the central
box passes between two or more workflow products - for example activities 1,2 and 5
may be executed by one workflow system and activities 3 and 4 by a different system,
with control passed between them at appropriate points within the overall workflow.
Standards to support this transfer of workflow control enable the development of
composite workflow applications using several different implementations of the WfM
Facility operating together as a single logical entity.

1.3.3 The Workflow Reference Model

The Reference Model identifies the functional areas addressed by the Workflow
Management Facility and typical usage scenarios:

• Process Definition: specifications for process definition data and its interchange
with the Workflow Execution environment.

• Workflow Interoperability: interfaces to support interoperability between different
workflow systems

• Invoked Applications: interfaces to support interaction with a variety of IT
application types

• Workflow Client Applications: interfaces to support interaction with user interface
desktop functions

Individual activity

Applications

User Interface &

Local Desktop
Applications

Business
Process

Databases

Process/Activity Mgt

Distribution Functionsteps

7/4/98 Joint Workflow Management Facility - Revised Submission 1-13

1

• Administration and Monitoring: interfaces to provide system monitoring and
metric functions to facilitate the management of composite workflow application
environments.

Figure 1-3 Workflow Reference Model

Scope of Specification

The current specification defines the interfaces that support Workflow Client
Applications, Interoperability and Process Monitoring as described in the Reference
Model. Specification of Process Definition interfaces as well as Administration
interfaces should be addressed by a future RFP.

1.4 Proof of Concept

The specification is based on the standards defined by the Workflow Management
Coalition (WfMC). These standards have been implemented in a number of WfM
products, such as IBM FlowMark, Hitachi Groupmaxup, Concentus KI Shell,
CSE/WorkFlow, Fujitsu TeamWARE Flow, FileNet Workflow Connect (prototypes
also available for Ensemble and Visual WorkFlo), CoCreate WorkManager, DIGITAL
ProcessManager and LinkWorks, TDI WebDeploy Workflow, ICL RoleModel
(prototype), Action Technologies ActionWorkflow (prototype), COSA SOLUTIONS
COSA (under development), Baan Company NV Enterprise Workflow (under
development), COI VisualFloware, Optika Imaging Systems PowerFlow.

WfMC has been defining OMG IDL versions of their specifications since 1995. Early
versions of the specification have been prototyped by the NIIIP consortium using
existing workflow products such as IBM FlowMark and Concentus KI Shell, by
DIGITAL ProcessManager, SNS LiveWorkFlow (under development), by
CSE/WorkFlow, and by Fuego Technology Corp. Fuego Engine.

Workflow Enactment Service

Process
Definition

Tools

Invoked
Applications

Other Workflow
Enactment
Service(s)

Administration
and

Monitoring Tools

Application
Data

Workflow Client Applications

Work List
Handling

Process
Control

Client application
interface

Invoked Application
interface

Administration
and

monitoring
interface

Interoperability
interface

Process definition interface

1-14 Joint Workflow Management Facility - Revised Submission 7/4/98

1

EDS has developed several workflow systems and has worked with a number of
workflow management products. As a result of this experience, EDS has a diversity of
experience and understanding of workflow management requirements and the potential
that this facility offers to users of the technology to achieve a new level of enterprise
automation. In addition, EDS has developed a Business Objects Facility and is in the
process of implementing large-scale, commercial applications of this technology.

1.5 Resolution of Mandatory RFP Requirements

1.5.1 Workflow Metamodel

Requirement: Submissions shall provide a complete semantic definition of their
workflow metamodel (expressed in some well known notation) that includes a
description of the relevant concepts that lead to the submitted interfaces, their
relationships with each other, and the life cycle of the instances of these interfaces.

Section 2 of this document describes the interfaces of the WfM Facility with a UML
diagram of the model, IDL interfaces and description of the semantics of these
interfaces. The CDL description of the model in Appendix C provides another
representation of these concepts.

1.5.2 Interfaces for Workflow Enactment

Requirement: Submissions shall specify a set of interfaces for workflow enactment,
i.e., the execution of workflow instances.

This submission defines interfaces for associating resources with workflow objects
(Assignment and Resource), requesting execution, state transitions, and associating
process data (Requester, Process, and Activity), and receiving and maintaining a
history of events (EventAudit and its subtypes). See Section 2 for details.

7/4/98 Joint Workflow Management Facility - Revised Submission 1-15

1

Figure 1-4 Workflow Execution Object

1.5.3 Workflow Monitoring

Requirement: Submissions shall provide interfaces for retrieving information about
the status of workflows.

Support is provided with operations for navigation of relationships between workflow
objects, access to their runtime information, and with notification of changes. This
support can be used for monitoring by both push and pull modalities. Process provides
information on the overall status of a workflow process and Activity provides
information of the status of particular steps in a workflow process.

1.5.4 Workflow Audit Trail

Requirement: Submissions shall provide interfaces for retrieving the history of
workflow execution. This history could include identification of the parties triggering
work and the resources performing the work as well as the work done.

A history is kept of workflow execution events. Each history item records the time,
resource, type, and details of the event. Operations are defined for retrieving the
history of status changes of Processes and Activities.

State

Assignment

Workflow
Relevant Data

Workflow
Execution

Object

Workflow
State Model

Resource Model

Context &
Result

Workflow
Audit Events

History

Change
Notifications

Event
Consumer

1-16 Joint Workflow Management Facility - Revised Submission 7/4/98

1

1.5.5 Nesting of Workflows

Requirement: Submissions shall provide interfaces that support accessing nested
workflows for purposes of the above functionality (deemed to be workflow enactment,
workflow monitoring, extraction of workflow event audit data).

This submission supports nesting of Processes. When a Process is created, a Requester
is associated with it; the Requester provides a means for the Process to signal status
changes, most notably its completion, back to the originator of the Process. This can
be used to realize various workflow nesting scenarios. In all scenarios a sub-Process is
created as part of the enactment of a main Process (using an appropriate process
manager factory); an appropriate Requester is registered with the sub-process to enable
synchronization of the two processes if required. The following describes some
examples.

Nested sub-process

Figure 1-5 Nested workflow structure

In nested sub-process workflow structures, one workflow may invoke another as the
performer of an Activity and then wait for it to complete. Note that an Activity is a
Requester, and the Activity that is realized by the sub-processes can serve as the
synchronization point for interaction of the two workflows.

It is also possible to create the sub-process at a particular process step (i.e., Activity)
and to register another Activity as the synchronization point (i.e., Requester).

Chained processes

Figure 1-6 Chained workflow structure

In chained workflow structures, one Process may invoke another, then carry on with
its own flow logic. The Processes terminate independently of each other; in this case
the Requester registered with the sub-process would be another entity that is interested
in the results of the sub-process; it might actually be the same Requester that was
registered with the main Process.

Workflow A

Workflow B

Workflow A

Workflow B

7/4/98 Joint Workflow Management Facility - Revised Submission 1-17

1

1.6 Resolution of Optional Requirements

Optional Requirement: The secondary focus of this RFP is for workflow schema
definitions providing access to metadata about workflow instances.

Process Definition will be addressed when sufficient consensus is reached on a
standard format for exchanging workflow definitions. This specification concentrates
on the run-time aspects of the Workflow Management Facility.

1.6.1 Definition of Workflow Schemas

Optional Requirement: Submissions may describe interfaces that enable creation,
retrieval and maintenance of workflow schemas.

The WfMC document Process Definition Interchange (see [5]), addresses workflow
schema definitions. The goal of the Process Definition Interchange interface is to allow
for the interchange of process definitions between different workflow management
systems. The WfMC is in the process of completing that interface.

1.6.2 Nesting of Workflow Schemas

Optional Requirement: Submissions may describe interfaces that enable nesting of
workflow schemas within other workflow schemas either by inclusion or reference.

The WfMC proposal for Process Definition Interchange (see [5]) propose that
workflow schemas may reference each other as a means of effecting nested schemas.

1.6.3 Support for Ad-hoc Workflows

Optional Requirement: Submissions may outline potential extensions to support ad-
hoc workflows, e.g., the ability to add or modify workflow schemas associated with
existing workflow instances.

At run-time the process definition is interpreted by software, scheduling the various
steps within the process and invoking the appropriate human and IT resources. There
exist situations however, where it is either not possible or desirable to obtain a process
definition which is detailed enough to be formalized and used as a suitable process
definition. There can be several reasons for the lack of a proper process definition, e.g.
the lack of detailed knowledge about the process or the business problem,
unavailability of the required resources to perform proper analysis and design of a
process, lack of tools or other resources, time or economical constraints, etc. In other
cases the problem of combinatorial explosion might prevent that a process definition
can be created which is precise enough to be used for a workflow system, e.g. when all
potential exceptions within a business process have to be considered and implemented.

In these or similar cases a workflow system shall allow, and optional and future
extensions to the suggested standards shall support, the creation of activities on an ad-
hoc basis, i.e. based on spontaneous interaction of a workflow participant. Activities
may thus be created ad-hoc, i.e. without pre-definition in a process definition.

1-18 Joint Workflow Management Facility - Revised Submission 7/4/98

1

Security and authorization features of the Workflow Management System may control
or influence, when, how and to which degree ad-hoc creation of activities may occur.
Ad-hoc activities may result in simple operations or imply the execution of a sub-
process, based on any process definition available to the system.

This specification does not prevent this type of ad-hoc behavior. Activities can be
added to or removed from active Processes; however, this specification does not
describe interfaces to achieve modifications of workflow process models.
Reassignment of resources is supported.

1.6.4 Level-of-service Parameters

Optional Requirement: Submissions may allow the specification of level-of-services
parameters that influence workflow enactment, for example: guaranteed completion,
time-box execution, optimized resource / cost usage.

Level of service parameters are set in the definition of a workflow process model. This
specification does not address workflow process definition.

Level of service parameters can be included in the process context, and passed to a
Process when it is initialized; we do not, however, define specific level of service
parameters at this time.

1.7 Discussion Issues

1.7.1 Transactions

Discussion Issue: It should be discussed how the submission uses the concept of
transactions, the underlying transaction-model and its dependency on the OMG
Transaction Service.

Operations on workflow objects specified in this submission are performed within
transactions. These operations can trigger interactions with other workflow objects.
For example, when a Process is started, some (or all) of its Activities will be created;
when a sub-process signals completion to its Activity this will trigger evaluation of
business rules in the main process to determine the next set of Activities to create.

Implementations of this facility will ensure the scope of transactions is limited,
complex status changes (as described above) will be split into a sequence of short
transactions and the WfM implementation will queue consequential transactions in a
recoverable manner. We also expect that an out-of-domain Requestor could use a
time-out capability to resume if a result never comes back.

1.7.2 Archiving of Workflow Instances

Discussion Issue: Submissions should describe adequate archiving policies and
mechanisms for reconstruction of the workflow execution sequence.

7/4/98 Joint Workflow Management Facility - Revised Submission 1-19

1

The execution history of workflow instances is recorded using EventAudit data.
Archiving of workflow instances can be realized using this information; the
specification of an archiving facility is beyond the scope of this submission.

1.7.3 Resource Selection

Discussion Issue: Submissions should explain how workflows are bound to
organizations, people and other resources during their enactment. Modeling of
organizations, people and other resources is not within the scope of this RFP; it is
being addressed by other OMG specifications and RFPs.

Resource selection is a mechanism for connecting workflows to needed resources,
including people and organizations. An Assignment, for example, describes the
association of a Resource to a particular work activity.

Workflow entities are associated with system, information and people resources via
operations on these entities. Associations may be abstract and their resolution may
occur at any point in the process. For example, people may be specified abstractly as
roles which are then resolved to actual people when an activity executes.

A detailed specification of resource assignment is beyond the scope of this submission.
However, realization of resource assignment with a specialization of the Assignment
interface, may be possible. The following sketches the basic concepts:

Certain activities in a process will request the assignment of needed resources. The
requests would be made to resource management processes. The resource management
work process would provide a generalized resource allocation mechanism. Resources
may be human participants, reusable facilities such as machines or consumable goods
such as parts and fluids. The resource manager may place work requests in work lists,
or assign resources with specialized algorithms. The specific mechanisms and selection
options will be left to the implementation.

1.7.4 Computing Resource Management

Discussion Issue: Submissions should address scalability. However, specification on
how to manage computing resources is not within the scope of this RFP.

The model proposed is designed to facilitate scalable implementations.

1.7.5 Workflow Integrity

Discussion Issue: Submissions should discuss how the integrity of workflows is
maintained. This includes failure recovery and rollback after system failures

The granularity of the workflow entities defined in this submission is such that they
may take advantage of an underlying persistence service. The states and their
transitions are defined at a low level of granularity simplifying the recoverability of the
workflow entities’ persistent state. The history capabilities in this submission provide
information to facilitate the recovery and rollback after system failure.

1-20 Joint Workflow Management Facility - Revised Submission 7/4/98

1

1.7.6 Security of the Workflow Management Facility

Discussion Issue: Submissions should discuss how the Workflow Management
Facility can be made secure including controlling access to workflows, workflow
information (e.g. the Audit Trail) and workflow schemas. Submissions should describe
their use of the OMG Security Service.

All objects are security sensitive and all operations are subject to security policy
control. The objects in this model are security aware and will pass on security
credentials when issuing requests. Default policies for security sensitive objects are
not defined and there are no special security considerations introduced.

From CORBA Services Security Section 15.3.2:

"An active entity must establish its rights to access objects in the system. It must either
be a principle, or a client acting on behalf of a principle. A principle is a human user
or system entity that is registered in and authentic to the system."

To meet this security requirement the process requester must be a principle or a client
acting on behalf of a principle to form the basis for security delegation considerations
and to achieve the access control needed.

Relative to CORBA Services Security Section 15.3.4, "Access Control Model", there
are two important parts to the Access Control Model, the object invocation access
policy and the application access policy.

The object invocation access policy is outside the scope of this specification.
However, for the object invocation access policy to work there must to control
attributes on the object. One extreme is to allow all access. For most situations some
minimum level of granularity of object operations should be supported for
interoperability.

The application access policy is inside the scope of this specification, and no policy is
specified or required. The various implementations of this standard should provide
whatever application access policy is needed for their customers and market.

Relative to CORBA Services Security Section 15.3.5, this specification does not list
any required application security relevant events. The various implementations of this
standard should provide whatever security relevant events are needed for their
customers and market.

Relative to CORBA Services Security Section 15.3.6, "Delegation", the Workflow
objects will often be "intermediate" objects in the Security Specification vocabulary.
As intermediate objects the Workflow objects should be able to support at least
"combined privilege delegation" and in higher accountability situations the Workflow
objects should support "traced delegation".

Relative to CORBA Services Security Section 15.3.7, "Non-repudiation", as long as a
Workflow process executes with in a single security domain, the need for non-
repudiation is usually low. When a Workflow process executes across security
domains (which is also across business domains in most cases), then non-repudiation
services could be required. The Security Service Specification states that "The non-

7/4/98 Joint Workflow Management Facility - Revised Submission 1-21

1

repudiation services specified here are under control of the applications". The need for
non-repudiation services is defined by the specific application situation, therefore this
specification does not mandate the use of any non-repudiation services.

Relative to CORBA Services Security Section 15.3.8, "Domains", workflow processes
may have several hierarchical levels. For practical security purposes the process
instance and its immediate activities should be within the same security policy domain.
Having the process definition, the requester and responsible participants in the same
security policy domain as the process instance and activity instances will reduce the
security overhead. Sometimes Workflows will exist across security domains. This
specification does not mandate that all the objects involved within a Workflow exist
within the same security policy domain.

1.7.7 Relationship to Envisioned OMG Technology

Submissions should discuss how they relate to the following envisioned OMG
technologies:

Business Object Facility

Discussion Issue: OMG Business Object Facility (BOF): Business Objects are the
building blocks of future applications. As it is the major goal of today’s workflow
management systems to interconnect applications, the Workflow Management Facility
will have to interconnect business objects in the future. As a result, the BOF and the
Workflow Management Facility may have to work together in a very tight manner.

The specification includes a description of the workflow model in Boca CDL. It may
be implemented with Business Object Facilities that support the Boca architecture.
Workflow management systems should be able to directly integrate business objects
within a workflow process and adapt related organization and resource components
used in the performance of workflow activities.

At the same time, these specifications are designed to incorporate existing workflow
systems such that these systems can interoperate with each other, outside of a BOF
environment.

Rule Management Facility

Discussion Issue: OMG Rule Management Facility - may be used to support the
behavioral aspect by implementing global constraints that have to be verified during
workflow execution. Workflows may be started as the implementation of the "Action"
Part of ECA-Rules (Event-Condition-Action).

This is not considered relevant until consensus is reached on process definition in the
workflow community and until there is an OMG Rule Management Facility.

1-22 Joint Workflow Management Facility - Revised Submission 7/4/98

1

Meta-Object Facility

Discussion Issue: OMG Meta-Object Facility (MOF) – supports the definition of
semantically rich metadata. Since the Workflow Management Facility needs to manage
workflow schemas, it may use MOF interfaces to create them. In addition, the
workflow metamodel of the Workflow Management Facility itself should be
representable in the MOF.

The proposed workflow model is representable in the MOF; a representation can be
derived using, e.g., the CDL description of the model provided in Appendix C.
Exploitation of the MOF is considered to be more important in the area of workflow
process definition which is not addressed by this submission.

Change Management Service

Discussion Issue: OMG Change Management Service - might be used to provide for
the evolution of workflow schemas and related workflow instances.

The change management service could be used to manage workflow definition changes
and to handle evaluation of work processes in ad-hoc scenarios. We do not address
process definition and ad-hoc workflow in this specification.

Product Data Management Enablers

Discussion Issue: OMG Product Data Management Enablers: Submissions should
describe how their interfaces can be used by PDM enablers.

The interfaces for requesting, managing, and querying workflow objects will provide
support for PDM Enabler engineering change models. The Resource is essentially the
same as the PDM Actor. This submission works well with the interfaces defined in the
PdmChangeManagement module.

Objects by Value

Discussion Issue: OMG Objects by Value (OBV) will be one mechanism by which
state information can be moved from one Workflow Management Facility to another or
to other facilities.

The specification does not depend on the ObV specification.

1.7.8 Virtual Enterprise

Discussion Issue: Submissions should discuss how they support processes across
virtual enterprises.

This specification particularly addresses the requirement for interoperability of
workflow systems in virtual enterprises. It allows companies involved in a virtual
enterprise to maintain the security and confidentiality of their processes within the
macroscopic workflow of the virtual enterprise. The specification supports the
dynamics of a virtual enterprise.

7/4/98 Joint Workflow Management Facility - Revised Submission 1-23

1

1.8 Relation to Existing Standards

1.8.1 Workflow Management Coalition

The Workflow Management Coalition (WfMC) is the standards consortium in the area
of Workflow Management Systems. The Coalition has defined a Workflow Reference
model and has published standards for the Workflow Application Client, the Workflow
Interoperability interfaces and Audit Data formats. The specification described in this
document is based on the existing WfMC standards.

1.8.2 WfMC Application Client specification

The WfMC Application Client specification defines operations that allow a Workflow
Application Client to obtain lists of workflow runtime entities and to get and set their
attributes and state.

The interfaces for Process, Activity, Assignment and Resource represent the entities
defined in the WfMC specification and support the operations defined in the WfMC
specification.

1.8.3 WfMC Audit Data specification

The WfMC Audit Data specification defines the status changes to be reported by a
WfM system and the format of the Audit records to be produced when such a status
change happens.

The format of the EventAudit and its subtypes reflects the format of Audit Data defined
in the WfMC specification.

1.8.4 WfMC Interoperability specification

The WfMC interoperability specification defines interfaces that enable the
collaboration of two WfM systems in the enactment of a complex workflow process.
WfMS A may delegate enactment of a sub process to WfMS B; B may inform A
about important status changes of the subprocess (including completion of the process)
and A controls execution of the subprocess.

Interaction between a main workflow process and subprocesses is supported by the
Requester interface inherited by Activity that allows an Activity in a (main) Process to
interact with another (sub) Process that implements the Activity. The requester is
registered with the sub-Process when it is created and the sub-Process will signal
status changes (most notably its completion) back to the Requester.

1.9 References

Here is a list of the OMG and WfMC specifications used in this specification; the
WfMC documents can be found at http://www.wfmc.org/wfmc/.

1-24 Joint Workflow Management Facility - Revised Submission 7/4/98

1

[1] The Workflow Reference Model, Version 1.1, November 1994, WfMC-TC-1003

[2] Terminology & Glossary, Version 2.0, June 1996, WfMC-TC-1011

[3] Workflow Client Application Programming Interface (WAPI) Specification, Version
1.2, October 1996, WfMC-TC-1009

[4] Workflow Interoperability - Abstract Specification, Version 1.0, October 1996,
WFMC-TC-1012

[5] Process Definition Interchange, WfMC TC-1016

[6] Audit Data Specification, WfMC TC-1015

[7] Workflow Facility Specification, Draft WfMC TC-2101

[8] OMG Event Service, in CORBAservices: Common Object Services Specification,
chapter 4

[9] OMG Life Cycle Service, in CORBAservices: Common Object Services Specification,
chapter 6

[10] OMG Naming Service, in CORBAservices: Common Object Services Specification,
chapter 3

[11] OMG Property Service, in CORBAservices: Common Object Services Specification,
chapter 13

[12] OMG Security Service, in CORBAservices: Common Object Services Specification,
chapter 15

[13] OMG Time Service, in CORBAservices: Common Object Services Specification,
chapter 14

[14] OMG Trading Object Service, in CORBAservices: Common Object Services
Specification, chapter 16

7/4/98 Joint Workflow Management Facility - Revised Submission 2-25

2

Specification 2
This submission specifies interfaces for workflow execution control, monitoring, and
interoperability between workflows defined and managed independently of each other.
The interfaces are based on a model of workflow objects which includes their
relationships and dependencies with requesters, assignments, and resources. The core
workflow interfaces are defined in the WorkflowModel module.

The model is graphically represented in UML class and object interaction diagrams,
and specified by IDL interfaces. For each interface, its attributes, relationships, state
set and its operations are described. Standard patterns are used for operations realizing
relationships and access to attributes and object state.

In addition to the core workflow interfaces, we also include a simple ’framework’ that
is meant to be a placeholder for a ’Business Component Framework’; we expect a
revision of this specification to align this placeholder with the result of the OMG
efforts to define such a framework in the context of the BOF and the Component
Model RFP. The framework is described in the WfBase module.

2.1 Overview

This section provides a brief overview on the core interfaces defined in this
specification; it also discusses typical usage scenarios. The following section describe
the interfaces in detail. Section 2.18 contains more detailed usage scenarios.

2.1.1 Workflow Interfaces

The core workflow interfaces are:

• WfRequester, links the immediate owner of a request for a WfProcess, i.e., it
receives significant events such as ’complete’

• WfProcessMgr, provides factory and location support for WfProcess

• WfProcess, is the performer of a workflow request issued by a user or automated
actor such as WfActivity as a WfRequester

• WfActivity, is a step in a WfProcess and may also be a WfRequester

• WfExecutionObject, is an abstract base class for WfProcess and WfActivity

• WfAssignment, links activities to potential/actual WfResources

• WfResource, a person or thing that can do and accepted a WfActivity.

2-26 Joint Workflow Management Facility - Revised Submission 7/4/98

2

• WfEventAudit, is a common interface for recording workflow events. Several
subtypes of this interface are defined to record change of the state of a workflow
object, process data associated with it, and change in the assignment of resources to
WfActivities.

Figure 2-1 Joint Workflow Management Facility Model

2.1.2 Process Enactment

To initiate enactment of a particular workflow process, a Requester that is responsible
for that Process would be identified; an existing Requester can be reused or a specific
one that observes this Process can be created.

W fExecutionObject

description : string
key : string
priority : long
name : string
state : string
valid_states : StringSequence
context : ProcessData

resume()
terminate()
abort()
suspend()
change_state()

W fEventAudit

tim estamp : Ti m eBase: :U tcT
event_type : str ing
activity_key : string
activity_nam e : str ing
process_key : str ing
pr ocess_nam e : str ing
process_mgr_name : string
domain_ id : str ing

0. .1

0..*
+source

0. .1 +history

0..*

W fResource

resource_key : string
resource_name : string

release()

W fAssignment

status : string
1

0..*

+assignee

1

+work_item

0..*

W fRequester

receive_event ()

W fActivity

result : P rocessData

complete()

1

0.. *

+activity 1

+assignment 0.. *

W fProcessMgr

nam e : s tr ing
descripti on : str ing
category : string
version : string
state : string
context_signature : ProcessDataInfo
result_si gnature : Pr ocessDataInfo

create_process ()

W fProcess

result : P rocessData

start()

1

0.. *

+requester 1

+performer 0.. *

1

0..*

+container 1

+step 0..*

1

0..*

1
+process

0..*

7/4/98 Joint Workflow Management Facility - Revised Submission 2-27

2

An appropriate Process Manager is identified and the Process is created using the
create_process operation of that manager. The Requester is associated with the Process
when it is created and will receive status change notifications from the Process. When
the Process is instantiated it might create a set of Activities representing process steps
in the Process.

The Process is initialized by setting its context data; context data may be used to
parametrize a generic workflow process, identify resources to be used by the process,
etc..

Enactment of the Process is initiated by invoking its start operation; the process
implementation will use context data and build-in logic to determine which Activities
are to be activated. It may also initiate other (sub-) Processes.

When an Activity is activated, its context is set and resources may be assigned to it by
creating Assignments linking it to Resources; the resource selection mechanism is not
defined here, but an implementation might, e.g., use another Process to determine
which resources to assign to a particular Activity, using the Activity’s context
information and other process parameters.

An Activity might be implemented by another (sub-) Process, i.e., it can e registered as
the Requester of that Process; the sub-process can be initiated when the Activity is
activated. In this case, the Activity is completed when the sub-Process completes and
the result of the Activity is obtained from the result of the Process.

An Activity can also be realized by an application that uses Activity’s the set_result
and complete operations to return results and signal completion of the Activity.

When an Activity is completed, its results will be used by the workflow logic to
determine follow-on Activities; the results can also be used to determine the overall
result of the Process it is contained in.

A Process is completed when there are no more Activities to be activated; it will signal
its completion to the associated Requester. At this time, the results of the process are
made available, too; intermediate results may be accessible while the Process is
running.

2.1.3 Process Monitoring

The overall status of a Process can be queried using the state, get_context and
get_result operations. The Requester associated with a Process also receives
notifications about status changes of the Process.

More detailed information on the status of the process steps can be obtained be
navigating the step relationship between Process and its Activities and using the status
inquiries provided by the Activity interface. Navigation of nested workflows is
supported by the process relationship between an Activity (which is a Requester) and
potential sub-Processes.

2-28 Joint Workflow Management Facility - Revised Submission 7/4/98

2

Whenever an Execution Object (Process or Activity) performs a (workflow relevant)
status change, an EventAudit is recorded. For each Execution Object, the history of
Event Audit items can be accessed to analyze the execution history of that object.
Event Audits might be published using the OMG Notification Service.

2.2 WorkflowModel module

The WorkflowModel module defines the core interfaces of the Workflow Management
Facility.

module WorkflowModel{

// Forward declarations
...

// Data Types
...

// Exceptions
...

// Interfaces

interface WfRequester : WfBase::BaseBusinessObject{...};
interface WfExecutionObject : WfBase::BaseBusinessObject {...};
interface WfProcessMgr : WfBase::BaseBusinessObject {...};
interface WfProcess :WfExecutionObject,

WfBase::BaseProcess {...};
interface WfProcessIterator : WfBase::BaseIterator {...};
interface WfActivity : WfExecutionObject, WfRequester{...};
interface WfActivityIterator : WfBase::BaseIterator{...};
interface WfAssignment : WfBase::BaseEntity{...};
interface WfAssignmentIterator : WfBase::BaseIterator{...};
interface WfResource : WfBase::BaseBusinessObject{...};
interface WfEventAudit : WfBase::BaseBusinessEvent{...};
interface WfEventAuditIterator : WfBase::BaseIterator{...};
interface WfCreateProcessEventAudit : WfEventAudit{...};
interface WfStateEventAudit : WfEventAudit {...};
interface WfDataEventAudit : WfEventAudit {...};
interface WfAssignmentEventAudit : WfEventAudit{...};

};

2.2.1 Data Structures

The WorkflowModel module defines the following data structures.

Workflow object sequences

typedef sequence<WfProcess> WfProcessSequence;
typedef sequence<WfActivity> WfActivitySequence;
typedef sequence<WfAssignment> WfAssignmentSequence;

7/4/98 Joint Workflow Management Facility - Revised Submission 2-29

2

typedef sequence<WfEventAudit> WfEventAuditSequence;

Sequences of workflow object used for handling of relationship navigation.

Process Data

typedef WfBase::NameValueInfoSequence ProcesDataInfo;
typedef WfBase::NameValueSequence ProcessData;

Name-value pair sequences are used to handle process data associated with a
WfExecutionObject; ProcessDataInfo describes the structure of these process data and
ProcessData represents context and result data of an execution object. See the section
on WfExecutionObject for details.

State sets

enum workflow_stateType{ open, closed };
enum while_openType{not_running, running };
enum why_not_runningType{ not_started, suspended };
enum how_closedType{ completed, terminated, aborted };
enum process_mgr_stateType{enabled, disabled };
enum assignment_stateType { potential, accepted };

These enumerations are used to describe sets of states of various workflow objects; see
below for details.

2.2.2 Exceptions

The WorkflowModel module defines the following exceptions

exception InvalidPerformer{};

Is raised by an attempt to signal a WfEventAudit to a WfRequester that was not
created by one of the WfProcesses associated with the WfRequester.

exception InvalidState{};

Is raised by an attempt to change the state of a WfExecutionObject to a state that is not
defined for that object.

exception InvalidData{};

Is raised by an attempt to update the context of the result of a WfExecutionObject with
data that do match the signature of that object.

exception TransitionNotAllowed{};

Is raised by an attempt to perform an invalid state transition of a WfExecutionObject.

2-30 Joint Workflow Management Facility - Revised Submission 7/4/98

2

exception CannotResume{};
exception CannotSuspend{};
exception AlreadySuspended{};
exception CannotStop{};
exception NotRunning{};

These exceptions are raised by operations on a WfExecutionObject that attempt to
perform invalid control operations on that object. See the section on
WfExecutionObject for details.

exception HistoryNotAvailable{};

Is raised by a request for event audit history of a WfExecutionObject when the History
is not available (.e., because the implementation of the WfM Facility does not support
recording of history for a specific execution object.

exception NotEnabled{};

Is raised by an attempt to create a WfProcess using a WfProcessMgr that is disabled.

exception AlreadyRunning{};
exception CannotStart{};

These exceptions are raised by an attempt to start a WfProcess that is already running
or cannot be started yet.

exception ResultNotAvailable{};

Is raised when the requested result of a WfExecutionObject is not available (yet).

exception CannotComplete{};

Is raised by an attempt to complete execution of a WfActivity when it cannot be
completed yet.

exception NotAssigned{};

Is raised by an attempt to release a WfResource from an assignment is not associated
with.

exception SourceNotAvailable{};

Is raised by a request for the source of a WfEventAudit when the source is no longer
available.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-31

2

2.2.3 Patterns

We use standard patterns to represent attributes and relationships of the workflow
interfaces. All operations return a WfBase::BaseException CORBA exception in
addition to the exceptions defined in this specification; see the discussion in the
chapter on the WfBase module for details.

Attributes

The pattern for access operations on attributes is the following: for an attribute with
name ATTRME and type TYPe, two operations are provided; TYPE ATTR(); returns
the value of the attribute, void set_ATTRNAME(in TYPE value) supports updates of
the attribute; the set operation is not provided for readonly attributes.

Relationships

The pattern for accessing cardinality 1 relationships is the same as for attributes. For
relationships with cardinality ’many’ the following pattern is applied: for a relationship
with name RELNAME and type TYPE, the how_many_RELNAME() operation returns
the number of elements in the relationship, get_iterator_RELNAME() returns a
TYPEIterator, get_sequence_RELNAME(in long how_many) returns a TYPESequence
and the is_member_RELNAME(in TYPE member) support checks for membership of
an object in the relationship.

2.3 WfRequester

WfRequester is the interface that has a direct concern with the execution and results of
a workflow process - it represents the request for some work to be done. Its performer,
a WfProcess, is expected to handle its request and communicate significant status
changes; in particular to inform the requester when it has completed performing the
requested work. A single requester can have many processes associated with it.

Often WfRequester will also be the object that starts the process. As a process starter
some of the control actions on the process include setting up the context, starting the
process and getting results and status.

There are two usage scenarios for the association of a WfProcess with a WfRequester:

• Nesting of workflow processes. A WfActivity is a WfRequester and may therefore
request that a WfProcess be its performer, i.e., implementation. In this case, the
WfActivity would be registered as the requester with the implementing sub-process
when the WfProcess is created and would receive notifications of status changes of
that sub-process; upon completion of the sub-process, the WfActivity would enter
completed state.

• Linking a workflow process to another (initiating or controlling) application. When
used as a linked process the requester should be a WfRequester which is not the
linking WfActivity. Requesters that are not activities are roles or adapters for
external clients.

2-32 Joint Workflow Management Facility - Revised Submission 7/4/98

2

2.3.1 IDL

interface WfRequester : WfBase::BaseBusinessObject{

long how_many_performer()
raises (WfBase::BaseException);

WfProcessIterator get_iterator_performer()
raises (WfBase::BaseException);

WfProcessSequence get_sequence_performer(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_performer(
in WfProcess member)
raises (WfBase::BaseException);

void receive_event(
in WfEventAudit event)
raises (WfBase::BaseException, InvalidPerformer);

};

2.3.2 Relationships

performer

Zero or more WfProcesses can be associated with a WfRequester. A requester is
associated with a WfProcess when the process is created.

The following operations support the performer relationship with WfProcess.

long how_many_performer()
raises (WfBase::BaseException);

WfProcessIterator get_iterator_performer()
raises (WfBase::BaseException);

WfProcessSequence get_sequence_performer(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_performer(
in WfProcess member)
raises (WfBase::BaseException);

Name Type Properties Purpose

performer WfProcess cardinality: 0..n
readonly

Associates work requests with
their performers.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-33

2

2.3.3 Operations

receive_event

The following operation is used by WfProcess to notify its requester of workflow
events. In particular the WfProcess must notify the requester of complete, terminate or
abort events or the transition to a closed state.

The workflow event contains the source of the event; an InvalidPerformer exception is
raised if the source of the event is not a performer associated with the WfRequester.

void receive_event(
in WfEventAudit event)
raises(WfBase::BaseException, InvalidPerformer);

2.4 WfExecutionObject

WfExecutionObject is an abstract base interface that defines common attributes, states,
and operations for WfProcess and WfActivity.

It provides the capability to get and set and internal states. Operations are provided to
get the current state and to make a transition from the current state into another state.
Operations are also provided for specific state transitions. These operations are
suspend, resume, terminate, and abort. States returned by these operations should not
be confused with the "state of the process" which is calculated by the top level
WfProcess. States returned by these operations pertain only to the object they are
returned from. For example, regardless of what activity is currently enabled, a process
as a whole can be paused and resumed. The propagation of state change of a
WfProcess object down to WfActivity objects or subprocesses is implementation and
process definition dependent.

The interface includes name, description, priority, and key attributes. It also provides
an operation for monitoring WfExecutionObject executions by returning, based on filter
specified, event audit records that represent the history of the execution. Other
operations include methods for getting and setting context.

2.4.1 IDL

enum workflow_stateType{ open, closed };
enum while_openType{ not_running, running };
enum why_not_runningType{ not_started, suspended };
enum how_closedType{ completed, terminated, aborted };

typedef NameValueSequence ProcessData;

interface WfExecutionObject : WfBase::BaseBusinessObject {

workflow_stateType workflow_state()
raises (WfBase::BaseException);

2-34 Joint Workflow Management Facility - Revised Submission 7/4/98

2

while_openType while_open()
raises (WfBase::BaseException);

why_not_runningType why_not_running()
raises (WfBase::BaseException);

how_closedType how_closed()
raises (WfBase::BaseException);

NameSequence valid_states()
raises (WfBase::BaseException);

string state()
raises (WfBase::BaseException);

void change_state(
in string new_state)
raises (WfBase::BaseException, InvalidState,

TransitionNotAllowed);

string name()
raises(WfBase::BaseException);

void set_name(in string new_value)
raises (WfBase::BaseException);

string key()
raises(WfBase::BaseException);

void set_key(
in string new_value)
raises (WfBase::BaseException);

string description()
raises(WfBase::BaseException);

void set_description(
in string new_value)
raises (WfBase::BaseException);

ProcessData process_context()
raises(WfBase::BaseException);

void set_process_context(
in ProcessData new_value)
raises (WfBase::BaseException, InvalidData);

unsigned short priority()
raises(WfBase::BaseException);

void set_priority(
in unsigned short new_value)
raises (WfBase::BaseException);

void resume()
raises (WfBase::BaseException, CannotResume);

void suspend()
raises (WfBase::BaseException,
CannotSuspend, AlreadySuspended);

void terminate()
raises (WfBase::BaseException, CannotStop, NotRunning);

void abort()
raises (WfBase::BaseException, CannotStop, NotRunning);

7/4/98 Joint Workflow Management Facility - Revised Submission 2-35

2

long how_many_history()
raises (WfBase::BaseException, HistoryNotAvailable);

WfEventAuditIterator get_iterator_history()
raises (WfBase::BaseException, HistoryNotAvailable);

WfEventAuditSequence get_sequence_history(
in long max_number)
raises (WfBase::BaseException, HistoryNotAvailable);

};

2.4.2 Attributes

The following discusses the operations that support access to the attributes in detail.

name

Human readable, descriptive identifier of the execution object.

string name()
raises(BseException);

void set_name(in string new_value)
raises(WfBase::BaseException);

key

Identifier of the execution object. The key of a WfProcess is unique amongst the set of
all WfProcesses created by a particular WfProcessMgr; the key of a WfActivity is
unique within the set of all WfActivities contained in a particular WfProcess. A key is
assigned to the execution object by its WfProcessMgr when it is created.

The key of a workflow object should not be confused with an ’object identifier’; it is
used for reference to the process or activity independently of the lifetime of the
execution object.

Name Type Properties Purpose

name string Descriptive name of a
workflow execution object

key string readonly (Business) identifier of an
execution object that uniquely
identifies it within the scope
of its ’parent’ object.

description string Information describing the
execution object.

priority unsigned
short

constraint:
0 < priority < 6

A number representing the
priority of the execution
element.

2-36 Joint Workflow Management Facility - Revised Submission 7/4/98

2

string key()
raises(WfBase::BaseException);

description

Description of the execution object.

string description()
raises(WfBase::BaseException);

void set_description(in string new_vaue)
raises(WfBase::BaseException);

context

Process relevant data that define the context of the execution object. The context is
described by a set of named properties; the following operations support access to the
context of an execution object. The NameValues structure identifies a set of property
names and values matching the signature of the execution object; the signature of a
WfProcess can be obtained using the get_context_signature operation provided by the
WfProcessMgr of the process. An InvalidContext exception is raised when an update
request does not match this signature; an UpdateNotAllowed exception is raised when
the implementation of the WfM Facility or the specific workflow process does not
allow an update of the context; see the section on WfProcess and WfActivity for details.

ProcessData context()
raises(WfBase::BaseException);

void set_context(
in ProcessData new_value)
raises (WfBase::BaseException, InvalidData, UpdateNotAllowed);

For a discussion of the context of WfActivity and WfProcess see the corresponding
sections below.

priority

Relative priority of the execution element in the set of all execution object of a given
type. Valid values are numbers between one and five, with three being "normal" and
one as the "highest" priority.

A request for update of the priority will raise an InvalidPriority exception when the
specified priority is out of range; an UpdateNotAllowed exception is raised when the
priority cannot be updated.

unsigned short priority()
raises(WfBase::BaseException);

void set_priority(
in unsigned short new_value)
raises (WfBase::BaseException, InvalidPriority, UpdateNotAllowed);

7/4/98 Joint Workflow Management Facility - Revised Submission 2-37

2

2.4.3 States

We define a hierarchy of states of an execution object. The top level states are
mandatory; implementations may define substates of the standard states defined here.
The following section describes the standard states and the basic accessor operations.

Figure 2-2 States of a WfExecutionObject

workflow_state state set

An execution object is either in state ’open’, i.e., it is active or in state ’closed’, i.e., it
has finished execution.

enum workflow_stateType { open, closed };

workflow_stateType workflow_state()
raises(WfBase::BaseException);

while_open state set

enum while_openType { not_running, running };

while_openType while_ open()

Values Substates Purpose

open while_open To reflect that the object is active and not finished.

closed how_closed Reflects that the object is finished and inactive.

Values Substates Purpose

not_running why_not_running Object is active and quiescent, but ready to
execute.

running The object is active and executing in the
workflow.

o p e n

not_running

no t_started

suspend e d

runn ing

closed

comp le ted

terminated

abor ted

not_running

no t_started

suspend e d

runn ing

no t_started

suspend e d

comp le ted

terminated

abor ted

2-38 Joint Workflow Management Facility - Revised Submission 7/4/98

2

raises(WfBase::BaseException);

why_not_running state set

enum why_not_runningType { not_started, suspended };

why_not_runningType why_not_running()
raises(WfBase::BaseException);

how_closed state set

enum how_closedType {completed, terminated, aborted };

how_closedType how_closed()
raises(WfBase::BaseException);

Extended state access

The following operations support access to a potentially extended set of states; a state
is represented by a ’dot-notation’ representing hierarchical states, e.g., ’open.running’.

Values Purpose

not_started Provides a state after creation where the object is active
and ready to be initialized and started.

suspended Provides a state to temporarily pause the execution of
the object. When an execution object is suspended, no
execution objects depending on this object may be
started.

Values Purpose

completed When an execution object has finished its task in the
overall workflow process it enters the completed state; it
is assumed that all execution objects associated with that
execution object are completed when it enters this state.

terminated Indicates that enactment of the execution object was
stopped before normal completion. It is assumed that all
execution objects depending on this execution object
(i.e., WfActivities contained in a WfProcess or a
WfProcess implementing a WfActivity) are either
completed or are terminated when it enters this state.

aborted Indicates that the enactment of the execution object has
been aborted before normal completion. No assumptions
on the state of execution objects depending on this
execution object are made when it enters this state.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-39

2

WfBase::NameSequence valid_states()
raises(WfBase::BaseException);

Returns a list of all the valid states that can be reached from the current state; e.g.,
’open.not_running.suspended’ and ’closed.terminated’ would be in the list of valid
states if the current state was ’open.running’; ’open.not_running.not_started’ probably
would not be in that list.

string state();

Gets the current state of the object.

2.4.4 Relationships

history

Zero or more WfEventAudit items can be associated with an execution object. An event
audit item is generated (and associated with the source object) for each workflow
relevant status change (change of state, context or result and change of resource
assignment) of a WfExecutionObject; status changes can be explicitly triggered by
operations that request a change of the object’s status or implicitly by the workflow
process logic. We will indicate which operations trigger generation of WfEventAudit
items.

The following operations provide access to the set of all WfEventAudit items
associated with a WfExecutionObject.

long how_many_history()
raises (WfBase::BaseException, HistoryNotAvailable);

WfEventAuditIterator get_iterator_history(
in string query,
in NameValueSequence names_in_query)
raises (WfBase::BaseException, HistoryNotAvailable);

WfEventAuditSequence get_sequence_history(
in long max_number)
raises (WfBase::BaseException, HistoryNotAvailable);

2.4.5 Operations

The following operations support execution control of the execution object; they all
change the state (and potentially other features) of an execution object and its
associated objects. Operations are provided to resume suspended WfExecutionObjects,
suspend running executions, and terminate or abort open workflow execution objects.

Name Type Properties Purpose

history WfEventAudit cardinality: 0..n
readonly

Associates event audit data with
their source execution object.

2-40 Joint Workflow Management Facility - Revised Submission 7/4/98

2

All of these operations trigger creation of a state change event (WfStateEventAudit);
other status changes resulting from the state change of the execution object might
trigger creation of additional WfEventAudit items.

resume

Requests enactment of a suspended execution object to be resumed. The state is set to
’open.running’ (or a substate) from ’open.not_running.suspended’.

A CannotResume exception is raised when the execution object cannot be resumed; for
example, resuming a WfActivity might not be allowed when the containing WfProcess
is suspended. A NotSuspended exception is raised when the object is not suspended.

void resume()
raises (WfBase::BaseException, CannotResume, NotSuspended);

terminate

Requests enactment of an execution object to be terminated before its normal
completion. A terminate request is different from an abort request in its effect of
execution object associated with the current execution object. See the sections on
WfProcess and WfActivity for details.

The state is set to ’not_running.terminated’ (or one of its substates) from
’open.running’ (or one of its substates).

A CannotStop exception is raised when the execution object cannot be terminated; for
example, termination of a WfActivity might not be allowed when its implementation is
still active and cannot be terminated. A NotRunning exception is raised when the
object is not running.

void terminate()
raises (WfBase::BaseException, CannotStop, NotRunning);

suspend

Requests enactment of an execution object to be suspended. The state is set to
’open.not_running.suspended’ (or one of its substates).

A CannotSuspend exception is raised when the execution object cannot be suspended;
for example, an implementation of the WfM Facility might not support suspension a
WfActivity. A NotRunning exception is raised when the object is not running.

void suspend()
raises (WfBase::BaseException, CannotSuspend, NotRunning);

abort

Requests enactment of a suspended execution object to be aborted before its normal
completion. The state is set to ’closed.aborted’.

A CannotStop exception is raised when the execution object cannot be aborted. A
NotRunning exception is raised when the object is not running.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-41

2

void abort()
raises (WfBase::BaseException, CannotStop, NotRunning);

change_state

Updates the current state of the execution object. As a result the state of execution
objects associated with this execution object might be updated, too. An InvalidState
exception is raised when the new_state is not a valid state for the execution object; a
TransitionNotAllowed exception is raised when the transition from the current state to
new_state is not allowed.

void change_state(
in string new_state)
raises(WfBase::BaseException, InvalidState, TransitionNotAllowed);

2.5 WfProcessMgr

A WfProcessMgr represents a template for a specific workflow process; it is used to
create instances of a workflow process. Logically it is the factory and locator for
WfProcess instances. It provides access to the meta information about the context a
process requires and the result a process produces.

A process manager is identified by its name which is unique within a given business
domain; it could located, e.g., via name using the OMG Naming Service, via name and
other attributes (e.g., category) via the OMG Trader Service, or other infrastructure
mechanisms.

2.5.1 IDL

struct DataInfoType{
string attribute_name;
string type_name;

};
typedef sequence<DataInfoType> ProcessDataInfo;

enum process_mgr_stateType{enabled, disabled };

interface WfProcessMgr : WfBase::BaseBusinessObject {

long how_many_process()
raises (WfBase::BaseException);

WfProcessIterator get_iterator_process()
raises (WfBase::BaseException);

WfProcessSequence get_sequence_process(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_process(
in WfProcess member)
raises (WfBase::BaseException);

2-42 Joint Workflow Management Facility - Revised Submission 7/4/98

2

process_mgr_stateType process_mgr_state()
raises(WfBase::BaseException);

void set_process_mgr_state(
in process_mgr_stateType new_state)
raises(WfBase::BaseException, TransitionNotAllowed);

string name()
raises(WfBase::BaseException);

void set_name(
in string new_value)
raises (WfBase::BaseException);

string description()
raises(WfBase::BaseException);

void set_description(
in string new_value)
raises (WfBase::BaseException);

string category()
raises(WfBase::BaseException);

void set_category(
in string new_value)
raises (WfBase::BaseException);

string version()
raises(WfBase::BaseException);

void set_version(
in string new_value)
raises (WfBase::BaseException);

ProcessDataInfo context_signature()
raises (WfBase::BaseException);

ProcessDataInfo result_signature()
raises (WfBase::BaseException);

WfProcess create_process(
in WfRequester requester)
raises (WfBase::BaseException, NotEnabled);

};

7/4/98 Joint Workflow Management Facility - Revised Submission 2-43

2

2.5.2 Attributes

All attributes of the WfProcessMgr are readonly; the are set when the process manager
is installed. The following discusses the operations that support access to the attributes
in detail.

name

Name of the process manager. The name uniquely identifies the process manager in a
business domain.

string name();

description

Description of the process manager. It is set when the process manager is initialized
and cannot be modified.

string description();

category

The category of a process manager is used for classification of process types. It is set
when the process manager is initialized and cannot be modified.

Name Type Properties Purpose

name string readonly Name of the process
manager.

description WfActivity readonly Describes the workflow
process type.

category string readonly Provide an indication of
the application domain
the process was designed
for.

version string readonly Defines the version of this
process manager.

context_signature ProcessDataInfo readonly Describes the structure of
the context data for the
process

result_signature ProcessDataInfo readonly Describes the structure of
the result data for the
process

2-44 Joint Workflow Management Facility - Revised Submission 7/4/98

2

string category();

version

The version attribute of a process manager is used to distinguish between different
versions of a process model. Note that this is a means to distinguish between different
process managers that have the same name; it is left to the implementation to define
the format of the version attribute. It is set when the process manager is initialized and
cannot be modified.

string version();

Process signature information

Meta information that defines how to set the context and return the result of an
instance of this interface is returned by these operations.

The ProcessDataInfo structure identifies the name and the data type (IDL type
represented by its string name) of the data item. ProcessDataInfo contains an entry for
each data item in the set of context or result data for the WfProcess.

struct DataInfoType{
string attribute_name;
string type_name;

};

typedef sequence<DataInfoType> ProcessDataInfo;

DataInfoSequence get_context_signature();
Returns the meta information that defines how to set the context of an instance.

DataInfoSequence get_result_signature();
Returns the meta information that specifies how instances will return results.

2.5.3 Relationships

process

Zero or more WfProcesses are associated with the WfProcessMgr that was used to
create them. The association is established when a WfProcess is created.

The following operation support access to the set of WfProcesses associated with a
WfProcessMgr.

Name Type Properties Purpose

process WfProcess cardinality: 0..n
readonly

Locate process instances created using
this WfProcessMgr.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-45

2

long how_many_process()
raises (WfBase::BaseException);

WfProcessIterator get_iterator_process()
raises (WfBase::BaseException);

WfProcessSequence get_sequence_process(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_process(
in WfProcess member)
raises (WfBase::BaseException);

2.5.4 States

process_ mgr_state state set

A WfProcessMgr can be enabled or disabled.

enum process_mgr_stateType{ enabled, disabled };

The following operation provide access to the state of a WfProcessMgr.

process_mgr_stateType process_mgr_state()
raises(WfBase::BaseException);

void set_process_mgr_state(
in process_mgr_stateType new_state)
raises(WfBase::BaseException);

2.5.5 Operations

create_process

This operation is used to create instances of a process model and link its requester.
When the process is created it enters state ’not_running.not_started’.

A NotEnabled exception is raised when the process manager is disabled.

WfProcess create_process(
in WfRequester requester)
raises (WfBase::BaseException, NotEnabled);

Values Purpose

enabled Indicates that creation of workflow processes is enabled.

disabled Indicates that creation of workflow processes is
disabled.

2-46 Joint Workflow Management Facility - Revised Submission 7/4/98

2

2.6 WfProcess

A WfProcess is the performer of a workflow request. All workflow objects that
perform work implement this interface. This interface allows work to proceed
asynchronously while being monitored and controlled.

The WfProcess interface specializes WfExecutionObject interface by adding an
operation to start the execution of the process, an operation to obtain the result
produced by the process and relationships with WfRequester and WfActivity.

Process States

When a WfProcess is created it enters ’open.not_running.not_started’ state. When it
has successfully finished processing, it enters ’closed.completed’ state. Additional state
changes can be performed using the change_state operation provided by
WfExecutionObject.

Process context and results

In general, the context of a WfProcess is set when it has been created (using an
appropriate WfProcessMgr factory) and before it is started. The context includes
information about process navigation data, the resources to use and the results to
produce. An implementation of the WfM Facility may or may not allow updates of the
process context after the process has been started.

The result of a WfProcess is derived from the process context and from results of
WfActivities contained in the WfProcess; a NULL result is possible and allowed.
Derivation of result data is left to the implementation of the WfProcess.

Process Requester

A WfProcess is created (using a WfProcessMgr) by a user or automated resource and
associated with a WfRequester. The WfRequester may be a WfActivity or an adapter
for external clients. WfProcess always has one WfRequester; an implementation of the
WfM Facility may allow for re-assignment of the WfRequester associated with a
WfProcess.

A WfProcess will inform its WfRequester about status changes such as modifications
of its state and its context using the requester’s receive_event operation.

Process Steps

A WfProcess can contain zero or more WfActivity objects. The WfActivity objects
represent steps in the process to be performed. The steps are assigned to WfResources
or become WfRequesters that use and create WfProcesses as sub-processes. It is left to
the implementation of the WfM Facility and the WfProcess to determine when to
create and start WfActivities. The set of active WfActivities contained in a WfProcess
can be obtained via the step relationship between WfProcess and WfActivity.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-47

2

Process Monitoring and Control

The performing of the work represented by a WfProcess may take anywhere from
seconds to months to even years for major projects. Operations are provided to monitor
the status of the process and to control execution of the process.

Execution of a WfProcess is initiated using the start operation; execution can be
suspended (and resumed) and terminated or aborted before it completes.

While the work is proceeding, the state operation on the WfProcess may be used to
check on the overall status of the work. More detailed information on the status of the
process can be obtained by navigating the relationship to the WfActivities contained in
the WfProcess and using the status inquiries supported by this interface (see below).

The get_result operation may be used to request intermediate result data, which the
may or may not be provided depending upon the details of the work being performed.
The results are not final, until the unit of work is completed. When the status of a
WfProcess changes, it sends a state change event to the requester informing it of the
change. Notification is always delivered on "completed" or "terminated" or "aborted"
events which tell the requesting object that the results could be available and the
WfProcess object is done with its work.

WfProcess usage scenarios

In general, a WfProcess will represent an instance of a particular process model (e.g.,
’approveCreditRequest’), the process steps being represented by WfActivities. The
WfProcess interface may also be used to represent any other discrete unit of work,
which needs to be performed asynchronously may implement this interface. It may or
may not expose a fine grained structure in terms of process steps. For example, a
wrapper for a legacy application could implement the WfProcess interface enabling
that application to perform a task in another workflow process. A driver for an actual
physical device, such as a numerical milling machine, could implement the WfProcess
interface if that device were to be controlled by a workflow system.

2.6.1 IDL

interface WfProcess : WfExecutionObject, WfBase::BaseProcess {

WfRequester requester()
raises(WfBase::BaseException);

void set_requester(in WfRequester new_value)
raises (WfBase::BaseException);

long how_many_step()
raises (WfBase::BaseException);

WfActivityIterator get_iterator_step()
raises (WfBase::BaseException);

WfActivitySequence get_sequence_step(
in long max_number)
raises (WfBase::BaseException);

2-48 Joint Workflow Management Facility - Revised Submission 7/4/98

2

boolean is_member_of_step(
in WfActivity member)
raises (WfBase::BaseException);

WfProcessMgr manager()
raises(WfBase::BaseException);

ProcessData result()
raises (WfBase::BaseException, ResultNotAvailable);

void start()
raises (WfBase::BaseException, CannotStart, AlreadyRunning);

};

interface WfProcessIterator : WfBase::BaseIterator {

WfProcess get_next_object ()
raises (WfBase::BaseException);

WfProcess get_previous_object()
raises (WfBase::BaseException);

WfProcessSequence get_next_n_sequence(
in long max_number)
raises (WfBase::BaseException);

WfProcessSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

2.6.2 Attributes

The following discusses the operations that support access to the attributes in detail.

result

The result produced by the WfProcess. In general the result is undefined until the
process completes, but some processes may produce intermediate results.

A ResultNotAvailable exception is raised when the result cannot be obtained yet.

ProcessData result()
raises (WfBase::BaseException, ResultNotAvailable);

Name Type Properties Purpose

result ProcessData readonly Result produced by the
process.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-49

2

2.6.3 Relationships

requester

One WfRequester is associated with a WfProcess. The association is established when
the process is created; implementations may support reassignment of the process to
another requester. The following operations support the ’requester’ relationship.

WfRequester requester();

void set_requester(
in WfRequester new_value)
raises(CannotChangeRequester);

step

Zero or more WfActivities are associated with a WfProcess. The association is
established when an activity is created as part of the enactment of the WfProcess. The
following operations support the ’step’ relationship.

long how_many_step()
raises (WfBase::BaseException);

WfActivityIterator get_iterator_step()
raises (WfBase::BaseException);

WfActivitySequence get_sequence_step(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_step(
in WfActivity member)
raises (WfBase::BaseException);

manager

A process is associated with one WfProcessMgr; the association is established when
the WfProcess is generated and cannot be modified. The following operation returns
the WfProcessMgr associated with the WfProcess.

WfProcessMgr manager()
raises(WfBase::BaseException);

Name Type Properties Purpose

requester WfRequester cardinality: 1 Associate the requester of the
process.

step WfActivity cardinality: 0..n
readonly

Contain the activities of a
process.

manager WfProcessMgr cardinality: 1
readonly

Identify the template for this
instance.

2-50 Joint Workflow Management Facility - Revised Submission 7/4/98

2

2.6.4 Operations

start

This operation is used to initiate enactment of a WfProcess. The state of the process is
changed from ’open.not_running.not_started’ to ’open.running’.
A CannotStart exception is raised when the process cannot be started (e.g., because it
is not properly initialized); an AlreadyRunning exception is raised when the process
has already been started.

void start()
raises (WfBase::BaseException, CannotStart, AlreadyRunning);

2.6.5 WfProcessIterator

The WfProcessIterator interface specializes the WfBase::BaseIterator interface and
adds the event audit specific operations according to the Iterator pattern described in
the section on patterns above.

The following attributes can be used in query expressions using the Trader Constraint
Language: key, name, priority, description, state.

2.7 WfActivity

WfActivity is a step in a process that is associated, as part of an aggregation, with a
single WfProcess. It represents a request for work in the context of the containing
WfProcess. There can be many active WfActivity objects within a WfProcess at a given
point in time.

The WfActivity interface specializes WfExecutionObject with an explicit complete
operation to signal completion of the step, and with an operation to set the result of the
WfActivity. It also adds relationships with WfProcess and WfAssignment.

Activity states

A WfActivity is created by the containing WfProcess; when it is created it enters state
’open.not_running.not_started’. It is left to the implementation of the WfM Facility or
the WfProcess to decide when to create a WfActivity. The lifetime of an WfActivity is
limited by that of its containing WfProcess.

When it becomes ready for execution, a WfActivity is transformed into state
’open.running’. It is left to the implementation of the WfM Facility or the WfProcess
to decide when to activate a WfActivity.

A WfActivity enters state ’closed.completed’ when its complete operation is invoked,
or, if it is implemented by a WfProcess, when it receives a completion notification via
the receive_event operation inherited from WfRequester.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-51

2

Other operations are provided to modify the state of the WfActivity as described in the
section on WfExecutionObject.

Activity context and result

The context of an activity is set by the containing WfProcess before the activity is
activated; the context is derived from the context of the WfProcess and results of other
activities. An implementation of the WfM Facility may support updates of the
activity’s context via the set_context operation inherited from WfExecutionObject.

An activity produces a result that can be used to determine which follow-on process
steps to activate. It can also be used to determine the result of the WfProcess. In
general, this overall result is not set until the process is closed; however, in-process,
intermediate results may be available. In both cases the implementation of the
workflow process sets the result in WfProcess and decides whether intermediate results
will be available. The set_result operation is used to feed back activity results into the
process.

Resource assignment

A WfActivity is a requester of work. Activities can be assigned to resources which
participate in the execution of that work; a WfAssignment represents the association of
a WfResource with a WfActivity and is used to indicate the nature of the assignment.
Zero or more resources can be assigned to an activity.

It is up to the implementation of the WfM Facility, the WfProcess, or the owning
WfActivity to coordinate the contributions of the resources assigned to an activity. This
allows for the realization of a variety of collaboration patterns. For example, an
implementation of the WfM Facility might decide to use WfAssignments to offer work
to a set of WfResources but allow only one of them to actually perform the work;
alternatively, the work might be split amongst the set of all resources that are assigned
to a particular activity. Work items can be assigned to WfResources that accept or
reject the work. Candidate resources include people or automated actors (see the
section on WfResource for details).

Activity realizations

A WfActivity is a request for work to be done in the context of its parent workflow
process. As a WfRequester, it can be associated with a WfProcess, as a subprocess,
which performs the work. A WfActivity does not have to be performed by a subprocess,
but can be performed by associated resources (e.g., people) using operations on the
WfActivity, for instance to obtain the context of the activity, to indicate that the activity
is completed, or to send the result data values.

 If it is realized by a WfProcess, it is the responsibility of WfActivity to conform to the
interface required by the WfProcess that is performing the work as a subprocess. This
means that the context of the activity will be mapped to that of the subprocess using
the context signature of the subprocess; also, results returned by the subprocess will be
mapped to the results of the activity. The overall effect of this is that a WfProcess can

2-52 Joint Workflow Management Facility - Revised Submission 7/4/98

2

be reused without any knowledge of its requesters. The WfActivity may use the meta
data about the signature of the WfProcess provided by the WfProcessMgr of that
process.

Process Monitoring

Given a reference to the WfProcess, the currently active WfActivity objects can be
found. From each WfActivity, one can discover the sub WfProcess objects, if any,
which may contain more activities. In this way, a distributed workflow of any scale
can be navigated.

Status information on the process steps can be obtained using the operations to get the
current state and the context of the corresponding WfActivity.

Activity - Process interaction

When a WfActivity is completed (it is told that the work is complete) the workflow
process, through the use of internal logic, determines which activities are open and
ready to start or resume. It is important to note that other events may also trigger a
workflow system to dynamically determine its activities and their state.

2.7.1 IDL

interface WfActivity :
WfExecutionObject, WfRequester {

long how_many_assignment()
raises (WfBase::BaseException);

WfAssignmentIterator get_iterator_assignment()
raises (WfBase::BaseException);

WfAssignmentSequence get_sequence_assignment(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_assignment(
in WfAssignment member)
raises (WfBase::BaseException);

WfProcess container()
raises(WfBase::BaseException);

ProcessData result()
raises(WfBase::BaseException, ResultNotAvailable);

void set_result(
in ProcessData result)
raises (WfBase::BaseException, InvalidData);

void complete()
raises (WfBase::BaseException, CannotComplete);

};

7/4/98 Joint Workflow Management Facility - Revised Submission 2-53

2

interface WfActivityIterator : WfBase::BaseIterator{

WfActivity get_next_object ()
raises (WfBase::BaseException);

WfActivity get_previous_object()
raises (WfBase::BaseException);

WfActivitySequence get_next_n_sequence(
in long max_number)
raises (WfBase::BaseException);

WfActivitySequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

2.7.2 Attributes

result

Represents the result produced by the realization of the work request represented by an
activity. An implementation of the WfM Facility may or may not provide access to the
result of an activity; if it does not, or if the result data are not available yet, a
ResultNotAvailable exception is raised by the result access operation.
The set_result operation is used to pass process data back to the workflow process. An
InvalidData exception is raised when the data do not match the signature of the
activity.

ProcessData result()
raises(WfBase::BaseException, ResultNotAvailable)

void set_result(
in ProcessData result)

 raises (WfBase::BaseException, InvalidData);

Name Type Properties Purpose

result ProcessData Result produced by the
realization of the activity

2-54 Joint Workflow Management Facility - Revised Submission 7/4/98

2

2.7.3 Relationships

assignment

Zero or more WfAssignments can be associated with a WfActivity; the association is
established when the assignment is created as part of the resource selection process for
the activity.

The following operations support access to the set of WfAssignments associated with
an activity.

long how_many_assignment()
raises (WfBase::BaseException);

WfAssignmentIterator get_iterator_assignment()
raises (WfBase::BaseException);

WfAssignmentSequence get_sequence_assignment(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_assignment(
in WfAssignment member)
raises (WfBase::BaseException);

process

This operation returns the WfProcess that this activity is a part of.

WfProcess container()
raises(WfBase::BaseException);

2.7.4 Operations

complete

This operation is used by an application to signal completion of the WfActivity. It will
be used together with the set_result operation to pass results of the activity back to the
workflow process.

Name Type Properties Purpose

assignment WfAssignment cardinality: 0..n
readonly

Links an activity to
potential/actual resources.

container WfProcess cardinality: 1
readonly

Links the process this activity is
part of.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-55

2

A CannotComplete exception is raised when the activity cannot be completed yet.

void complete()
raises (WfBase::BaseException, CannotComplete);

2.7.5 WfActivityIterator

The WfActivityIterator interface specializes the WfBase::BaseIterator interface and
adds the event audit specific operations according to the Iterator pattern described in
the section on patterns above.

The following attributes can be used in query expressions using the Trader Constraint
Language: key, name, priority, description, state.

2.8 WfAssignment

WfAssignment links WfActivity requests for resources to potential or actual
WfResources. This interface may be specialized by resource management facilities that
interpret the context of the activity to create and negotiate assignments with resources.

Assignments are created as part of the resource selection process before an activity
becomes ready for execution. The lifetime of an assignment is limited by that of the
associated activity.

2.8.1 IDL

enum assignment_stateType { potential, accepted };

interface WfAssignment : WfBase::BaseEntity{

WfActivity activity()
raises(WfBase::BaseException);

WfResource assignee()
raises(WfBase::BaseException);

void set_assignee(
in WfResource new_value)
raises (WfBase::BaseException);

assignment_stateType assignment_state()
raises(WfBase::BaseException);

void set_assignment_state(
in assignment_stateType new_value)
raises (WfBase::BaseException, TransitionNotAllowed);

};

interface WfAssignmentIterator : WfBase::BaseIterator{

WfAssignment get_next_object ()

2-56 Joint Workflow Management Facility - Revised Submission 7/4/98

2

raises (WfBase::BaseException);
WfAssignment get_previous_object()

raises (WfBase::BaseException);
WfAssignmentSequence get_next_n_sequence(

in long max_number)
raises (WfBase::BaseException);

WfAssignmentSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

2.8.2 Relationships

activity

A WfAssignment is associated with one WfActivity; the association is established when
the assignment is created as part of the resource selection process for the activity. The
following operation returns the associated WfActivity.

WfActivity activity()
raises(WfBase::BaseException);

assignee

A WfAssignment is associated with one WfResource. The association is established
when the assignment is created as part of the resource selection process for the
activity; the assignment can be reassigned to another resource at a later point in time.
The following operations support the assignee relationship. An InvalidResource
exception is raised by an attempt to assign an invalid resource to the assignment.

WfResource assignee()
raises(WfBase::BaseException);

void set_assignee(
in WfResource new_value)
raises (WfBase::BaseException, InvalidResource);

Name Type Properties Purpose

activity WfActivity cardinality: 1
readonly

Associate the activity this assignment
exists for.

assignee WfResource cardinality: 1 Link the resource for this assignment.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-57

2

2.8.3 States

assignment_state state set

enum assignment_stateType { potential, accepted };

The following operations support access to and modification of the status of an
assignment.

A WfAssignmentEventAudit is generated when the status of the assignment is changed;
the WfActivity associated with the assignment is shown as the source of that event.

assignment_stateType assignment_status()
raises(WfBase::BaseException);

void set_assignment_state(
in assignment_stateType new_state)
raises(WfBase::BaseException);

2.8.4 WfAssignmentIterator

The WfAssignmentIterator interface specializes the WfBase::BaseIterator interface and
adds the event audit specific operations according to the Iterator pattern described in
the section on patterns above.

The state attribute described for the WfAssignment interface can be used in query
expressions using the Trader Constraint Language.

2.9 WfResource

WfResource is an abstraction that represents a person or thing that will potentially
accept an assignment to an activity. Potential and/or accepted WfAssignments are links
between the requesting WfActivities and WfResource objects. It is expected that this
interface will be used to implement adapters for objects representing people and things
implemented in user, organization, and resource models. These models are outside the
scope of this specification.

2.9.1 IDL

interface WfResource : WfBase::BaseBusinessObject{

long how_many_work_item()
raises (WfBase::BaseException);

WfAssignmentIterator get_iterator_work_item()

Values Purpose

potential An assignment has been offered but not yet accepted.

accepted Resource has accepted the assignment.

2-58 Joint Workflow Management Facility - Revised Submission 7/4/98

2

raises (WfBase::BaseException);
WfAssignmentSequence get_sequence_work_item(

in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_work_items(
in WfAssignment member)
raises (WfBase::BaseException);

string resource_key()
raises(WfBase::BaseException);

string resource_name()
raises(WfBase::BaseException);

void release(
in WfAssignment from_assigment,
in string release_info)
raises (WfBase::BaseException, NotAssigned);

};

2.9.2 Attributes

resource_key

The resource key identifies a resource within a given business domain; it is assumed
that resources are defined in the same business domain as the workflow processes they
are associated with.

The key is set when the object is initialized; modification of the key can be done in the
context of a resource management facility.

string resource_key()
raises(WfBase::BaseException);

resource_name

A human readable, descriptive name of the resource.

string resource_name()
raises(WfBase::BaseException);

Name Type Properties Purpose

resource_key string readonly Uniquely identifies the resource.

resource_name string readonly Name of an resource.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-59

2

2.9.3 Relationships

work_item

Zero or more WfAssignments are associated with a resource; the association is
established when the assignment is created as part of the resource selection process for
an activity; the assignment can be reassigned to another resource at a later point in
time.

The following operations provide access to the set of Wfassignments associated with a
resource.

long how_many_work_item()
raises (WfBase::BaseException);

WfAssignmentIterator get_iterator_work_item()
raises (WfBase::BaseException);

WfAssignmentSequence get_sequence_work_item(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_work_items(
in WfAssignment member)
raises (WfBase::BaseException);

2.9.4 Operations

release

The release operation is used to signal that the resource is no longer needed for a
specific assignment. It takes the assignment that is no longer associated with the
resource and a string that specifies additional information on the reason for realizing
the resource as input. A NotAssigned exception is raised when the WfAssignment
specified as input is not assigned to the WfResource.

It is assumed that this operation is invoked when an assignment is deleted or when an
assignment it reassigned to another resource.

void release (
in WfAssignment from_assignment,
in string release_info)
raises(WfBase::BaseException, NotAssigned);

Name Type Properties Purpose

work_item WfAssignment cardinality: 0..n
readonly

Provides a link to potential and
accepted work assignments.

2-60 Joint Workflow Management Facility - Revised Submission 7/4/98

2

2.10 WfEventAudit

WfEventAudit provides audit records of workflow event information. It provides
information on the source of the event and contains specific event data. Workflow
events include state changes, change of a resource assignment, and data changes.
Workflow events are persistent and can be accessed navigating the history relationship
of a WfExecutionObject. Workflow audit event objects are not part of the persistent
state of their source workflow object.

A workflow event audit object is created when a workflow object changes its status
(state change, process data change or assignment change); its lifetime is not limited by
the lifetime of the event source object. Operations for managing the retention,
archiving, and deletion of workflow events are not specified in this submission.

The WfEventAudit defines a set of event properties common to all workflow audit
events; in particular it provides an identification of the source of the event in terms of
(business) identifiers of the workflow entities WfProcessMgr, WfProcess and
WfActivity.

2.10.1 IDL

interface WfEventAudit : BaseBusinessEvent{

WfExecutionObject source()
raises(WfBase::BaseException, SourceNotAvailable);

TimeBase :: UtcT timestamp()
raises(WfBase::BaseException);

string event_type()
raises(WfBase::BaseException);

string activity_key()
raises(WfBase::BaseException);

string activity_name()
raises(WfBase::BaseException);

string process_key()
raises(WfBase::BaseException);

string process_name()
raises(WfBase::BaseException);

string process_mgr_name()
raises(WfBase::BaseException);

string process_mgr_version()
raises(WfBase::BaseException);

};

interface WfEventAuditIterator : WfBase::BaseIterator{
WfEventAudit get_next_object ()

raises (WfBase::BaseException);
WfEventAudit get_previous_object()

raises (WfBase::BaseException);
WfEventAuditSequence get_next_n_sequence(

7/4/98 Joint Workflow Management Facility - Revised Submission 2-61

2

in long max_number)
raises (WfBase::BaseException);

WfEventAuditSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

2.10.2 Attributes

timestamp

Records the time the status change of the source occurred that triggered the event audit
item to be created, using the TimeBase::UtcT data type defined by the OMG Time
Service.

Name Type Properties Purpose

timestamp TimeBase:UtcT readonly Records time of the event.

event_type string readonly Describes the audit event
type.

activity_key string readonly Identifies the WfActivity
associated with the event;
NULL for process events.

activity_name string readonly Name of the WfActivity
associated with the event;
NULL for process events.

process_key string readonly Identifies the WfProcess
associated with the event.

process_name string readonly Name of the process
associated with the event

process_mgr_name string readonly Name of the process
manager associated with
the event

process_mgr_version string readonly Version of the process
manager

2-62 Joint Workflow Management Facility - Revised Submission 7/4/98

2

TimeBase::UtcT timestamp();

event_type

Identifies the specific event type. The following is a set of pre-defined event types;
implementations of the WfM Facility may decide to support additional audit event
types.

string event_type() raises(WfBase::BaseException);

activity_key and activity_name

If the event is triggered by a status change of a WfActivity, the key and the name of
the activity is recorded with the WfEventAudit. Otherwise the activity related
attributes contain a NULL value.

The following operations return the key and the name of the WfActivity associated
with the event.

string activity_key() raises(WfBase::BaseException);
string activity_name() raises(WfBase::BaseException);

process_key and process_name

The key and the name of the WfProcess associated with the source of an event are
recorded with the WfEventAudit. If the event was triggered by a WfActivity this is the
containing WfProcess; if it was triggered by a status change of a WfProcess, it is that
process.

The following operations return the key and the name of the WfProcess associated with
the event.

string process_key() raises(WfBase::BaseException);
string process_name() raises(WfBase::BaseException);

Name Purpose

processCreated A WfProcess was created

processStateChanged The state of a WfProcess was changed

processContextChanged The context of a WfProcess was initialized or
changed

activityStateChanged The state of a WfActivity was changed

activityContextChanged The context of a WfActivity was changed

activityResultChanged The result of a WfActivity was set

activityAssigmentChanged The status or the resource assignment of a
WfAssignment was initialized or changed

7/4/98 Joint Workflow Management Facility - Revised Submission 2-63

2

process_mgr_name and process_mgr_version

The WfProcessMgr associated with the workflow object that triggered the event is
identified via its name and version. If the event was triggered by a status change of an
activity this is the manager of the process that contains the activity; if it was triggered
by a status change of a process, this is the manager of that process.

string process_mgr_name() raises(WfBase::BaseException);
string process_mgr_version() raises(WfBase::BaseException);

2.10.3 Relationships

source

A WfEventAudit can be associated with the WfExecutionObject which triggered the
event. Event audit items are meant to provide information on the execution history of
workflow object even after the source object has been deleted; in this case, no source
would be associated with the WfEventAudit.

The following operation returns the source of the event, when available; if the source
is not available, a SourceNotAvailable exception is raised.

WfExecutionObject source()
raises(WfBase::BaseException, SourceNotAvailable);

2.10.4 WfEventAuditIterator

The WfEventAuditIterator interface specializes the WfBase::BaseIterator interface and
adds the event audit specific operations according to the Iterator pattern described in
the section on patterns above.

All of the attributes described for the WfEventAudit interface can be used in query
expressions using the Trader Constraint Language.

2.10.5 Publication via Notification Service

A workflow event can be published using the OMG Notification Service (note that
BaseBusinessObject is a CosNotifyComm:StructuredPushSupplier). The information
recorded by a WfEventAudit entity is mapped into the CosNotification ::
StructuredEvent data structure as follows:

Name Type Properties Purpose

source WfExecutionObject cardinality: 0..1
readonly

Associates the source of the
event.

2-64 Joint Workflow Management Facility - Revised Submission 7/4/98

2

• FixedEventHeader: domain_name is set to ’workflow’, event_type is set to the
event_type defined here, event_name is set to NULL

• OptionalHeaderFields are used to hold the other attributes defined above; the
attributes are mapped to the PropertySequence (i.e., name-value pair sequence) of
the optional header in the obvious way using the attribute names to identify the
properties and string-type values.

• Specialization of the WfEventAudit entity will use the body fields of the
StructuredEvent; the mapping for the four specialization defined here is given
below.

2.11 WfCreateProcessEventAudit

This interface specializes WfEventAudit by adding information related to creation of a
WfProcess. If the process is created as a sub-process of another process that is
synchronized with the main process via a WfActivity requester, information on the
requester is recorded.

The event_type is set to processCreated for this event.

2.11.1 IDL

interface WfCreateProcessEventAudit : WfEventAudit{

string p_activity_key()
raises(WfBase::BaseException);

string p_process_key()
raises(WfBase::BaseException);

string p_process_name()
raises(WfBase::BaseException);

string p_process_mgr_name()
raises(WfBase::BaseException);

string p_process_mgr_version()
raises(WfBase::BaseException);

};

7/4/98 Joint Workflow Management Facility - Revised Submission 2-65

2

2.11.2 Attributes

p_activity_key

If the requester of the newly created workflow process is a WfActivity, the key of that
activity is recorded.

string p_activity_key() raises(WfBase::BaseException);

p_process_key

If the requester of the newly created workflow process is a WfActivity, the key of the
WfProcess that contains that activity is recorded.

string p_process_key() raises(WfBase::BaseException);

p_process_mgr_name and p_process_mgr_version

If the requester of the newly created workflow process is a WfActivity, name and
version of the process manager of the process that contains that activity is recorded.

string p_process_mgr_name() raises(WfBase::BaseException);
string p_process_mgr_version() raises(WfBase::BaseException);

2.11.3 Publication via Notification Service

The attributes defined by this specialization of the WfEventAudit are mapped into the
FilterableEventBody of the StructuredEvent; mapping is straightforward, using the
attribute names to identify the properties and string-type values.

Name Type Properties Purpose

p_activity_key string readonly Identify activity which is the
requester for the newly created
process

p_process_key string readonly Identify process that contains
parent activity.

p_process_mgr_name string readonly Identify process manager of the
parent process.

p_process_mgr_version string readonly Identifies the version of the
process manager of the parent
process.

2-66 Joint Workflow Management Facility - Revised Submission 7/4/98

2

2.12 WfStateEventAudit

This interface specializes WfEventAudit by adding state change information. A state
change event is signaled when a WfExecutionObject changes its state; this covers both
state changes resulting from a change_state operation request and internal state
changes triggered by the execution logic of a WfProcess (e.g., process completes
successfully, activity is suspended because the containing process was suspended,
etc.). The event_type is processStateChanged or activityStateChanged.

2.12.1 IDL

interface WfStateEventAudit : WfEventAudit {

string old_state()
raises(WfBase::BaseException);

string new_state()
raises(WfBase::BaseException);

};

2.12.2 Attributes

old_state

The state of the execution object before the status change is recorded. The state is
described using ’dot-notation’. The ’old’ state is recorded for convenience here; it
could be deduced by analyzing the history of the execution object. Recording of the
old state is optional.

string old_state() raises(WfBase::BaseException);

new_state

The state of the execution object after the state change is recorded. The state is
described using ’dot-notation’.

string new_state() raises(WfBase::BaseException);

2.12.3 Publication via Notification Service

The attributes defined by this specialization of the WfEventAudit are mapped into the
FilterableEventBody of the StructuredEvent; mapping is straightforward, using the
attribute names to identify the properties and string-type values.

Name Type Properties Purpose

old_state string readonly Records the previous state.

new_state string readonly Records the new state.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-67

2

2.13 WfDataEventAudit

This interface specializes WfEventAudit for data change events. A data change event is
signaled when the context of a WfExecutionObject or the result of a WfActivity is
initialized or changed. The event_type is processContextChanged,
activityContextChanged or activityResultChanged.

2.13.1 IDL

interface WfDataEventAudit : WfEventAudit {

ProcessData old_data()
raises(WfBase::BaseException);

ProcessData new_data()
raises(WfBase::BaseException);

};

2.13.2 Attributes

These operations return additional information about the data change event.

old_data

Records the context resp. result data of the execution object before the change; only the
data items that were changed are reported. This event also records the initialization of
the context of a WfProcess resp. of the result of a WfActivity; in these cases, old_data is
NULL.

The ’old’ data are recorded for convenience here; they could be deduced by analyzing
the history of the execution object. Support for recording of old data is optional.

ProcessData old_data() raises(WfBase::BaseException);

new_data

Records the context resp. result data of the execution object after the change; only the
data items that were changed are reported. This event also records the initialization of
the context of a WfProcess resp. of the result of a WfActivity; in these cases, new_data
contains the initial data.

ProcessData new_data() raises(WfBase::BaseException);

Name Type Properties Purpose

old_data ProcessData readonly Identifies the previous data used.

new_data ProcessData readonly Records the new data to be used.

2-68 Joint Workflow Management Facility - Revised Submission 7/4/98

2

2.13.3 Publication via Notification Service

The information recorded in the new_data attribute by this specialization of the
WfEventAudit are mapped into the ’remainder_of_body’ part of the StructuredEvent.

2.14 WfAssignmentEventAudit

This interface specializes WfEventAudit for assignment change events. The event
records resource and assignment status before and after the change. The event_type is
activityAssignmentChanged.

An assignment change event is signaled when assignments for an activity are created
(in this case the old_... data is NULL), when the status of an assignment is changed, or
when an existing assignment is reassigned to another resource. The WfActivity
associated with the assignment is reported as the source of the event.

2.14.1 IDL

interface WfAssignmentEventAudit : WfEventAudit{

string old_assignment_state()
raises(WfBase::BaseException);

string old_resource_key()
raises(WfBase::BaseException);

string old_resource_name()
raises(WfBase::BaseException);

string new_assignment_state()
raises(WfBase::BaseException);

string new_resource_key()
raises(WfBase::BaseException);

string new_resource_name()
raises(WfBase::BaseException);

};

7/4/98 Joint Workflow Management Facility - Revised Submission 2-69

2

2.14.2 Attributes

old_assignment_state, old_resource_key and old_resource_name

The status of the assignment before the change may be recorded. This event also
covers creation of a new assignment; in this case, the ’before event’ information is
NULL.

string old_assignment_state() raises(WfBase::BaseException);
string old_resource_key() raises(WfBase::BaseException);
string old_resource_name() raises(WfBase::BaseException);

new_assignment_state, new_resource_key and new_resource_name

The status of the assignment after the change is recorded.

string new_assignment_state() raises(WfBase::BaseException);
string new_resource_key() raises(WfBase::BaseException);
string new_resource_name() raises(WfBase::BaseException);

2.14.3 Publication via Notification Service

The attributes defined by this specialization of the WfEventAudit are mapped into the
FilterableEventBody of the StructuredEvent; mapping is straightforward, using the
attribute names to identify the properties and string-type values.

Name Type Properties Purpose

old_assignment_state string readonly Records assignment status before
the change

old_resource_key string readonly Identifies resource associated with
assignment before the change.

old_resource_name string readonly Name of the associated resource.

new_assignment_state string readonly Records assignment status after
the change

new_resource_key string readonly Identifies resource associated with
assignment after the change.

new_resource_name string readonly Name of the associated resource.

2-70 Joint Workflow Management Facility - Revised Submission 7/4/98

2

2.15 The WfBase Module

The WfBase module defines a set of base interfaces for the workflow interfaces. This
’base framework’ is separated from the core specification to enable adaptation of this
specification to the results of the ongoing work in OMG on the definition of a
’Business Component Framework’.

module WfBase {

// Data Types

struct NameValueInfo{
string attribute_name;
string type_name;

};
typedef sequence<NameValueInfo> NameValueInfoSequence;

struct NameValue{
string the_name;
any the_value;

};
typedef sequence <NameValue> NameValueSequence;

typedef sequence <string> NameSequence;

struct BaseError {
long exception_code;
string exception_source;
any exception_object;
string exception_reason;
any exception_data;

};
typedef sequence <BaseError> BaseErrorSequence;

// Exceptions

exception BaseException {
BaseErrorSequence errors;

};

exception InvalidNames{};
exception InvalidQuery{};
exception GrammarNotSupported{};

// Interfaces

#ifdef FRAMEWORK_SUPPORT

interface BaseBusinessObject :
CosTransactions :: TransactionalObject,

7/4/98 Joint Workflow Management Facility - Revised Submission 2-71

2

CosObjectIdentity :: IdentifiableObject,
CosNotifyComm :: StructuredPushSupplier,
CosLifeCycle :: LifeCycleObject {};

#else
typedef Object BaseBusinessObject;

#endif

interface BaseEntity : BaseBusinessObject {};

interface BaseProcess : BaseBusinessObject {};

interface BaseBusinessEvent : BaseBusinessObject {};

interface BaseIterator { ... };
};

2.15.1 Data Types

NameValueInfo

struct NameValueInfo{
string attribute_name;
string type_name;

};
typedef sequence<NameValueInfo> NameValueInfoSequence;

The NameValueInfo structure provides information on the structure of a name-value
pair. The attribute_name attribute provides the name of the pair, the type_name
attribute identifies the (IDL) type of the value.

NameValue

struct NameValue{
string the_name;
any the_value;

};
typedef sequence <NameValue> NameValueSequence;

The NameValue structure is used to handle name-value pair lists; the the_name
attribute holds the string name of the item, the the_value attribute is a CORBA::Any
and holds the value of the item.

NameSequence

typedef sequence <string> NameSequence;

Used to handle lists of names.

2-72 Joint Workflow Management Facility - Revised Submission 7/4/98

2

Base Error

struct BaseError {
long exception_code;
string exception_source;
any exception_object;
string exception_reason;

};

typedef sequence <BaseError> BaseErrorSequence;

The BaseError structure is used to hold information on an application error. The
exception_source is a printable description of the source of the exception. The
exception_object is a pass-by-value object or an object reference of the object which
generated the exception. The exception_code is an identifier associated with the
source type. The exception_reason is a textual string containing a description of the
exception and should correspond to the code.

2.15.2 Exceptions

BaseException

exception BaseException {
BaseErrorSequence errors;

};

BaseException is an exception that holds a sequence of BaseError structures -
essentially a sequence or exceptions. The sequence is a push-down list so that the most
recently occurring exception is first. This allows multiple exceptions to be returned so
that multiple problems may be addressed, as where a user has a number of data entry
errors or where consequential errors are recorded as a result of a low-level exception.

The BaseException is returned by all operations defined in this specification to support
implementations of the WfM Facility to raise implementation specific exceptions.

QueryExceptions

exception InvalidNames{};
exception InvalidQuery{};
exception GrammarNotSupported{};

The InvalidNames exception is raised when the NameValue list provided as input for a
set_names_in_expression operation on a BaseIterator.

The InvalidQuery exception is raised when an invalid query expression is provided as
input for a set_query_expression operations on a BaseIterator.

The GrammarNotSuported exception is raised when the input parameter of the
set_query_grammar on a BaseIterator specifies a query grammar that is not supported
by the iterator.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-73

2

2.16 Base Business Object Interfaces

2.16.1 BaseBusinessObject

A BaseBusinessObject is the base interface for all business object interfaces. It is a
TransactionalObject, supports LifeCycle operations, is Identifiable and may publish
notification events via the OMG Notification Service as a StructuredPushSupplier.

For all conformance classes except ’FrameworkSupport’ this is a CORBA Object.

#idef FRAMEWORK_SUPPORT

interface BaseBusinessObject :
CosTransactions :: TransactionalObject,
CosObjectIdentity :: IdentifiableObject,
CosNotifyComm :: StructuredPushSupplier,
CosLifeCycle :: LifeCycleObject {};

#else

 typedef Object BaseBusinessObject;

#endif

2.16.2 BaseEntity

BaseEntity represents an elemental business object.

interface BaseEntity : BaseBusinessObject {};

2.16.3 BaseProcess

BaseProcess represents business objects that perform some action within the system
that acts on other business objects. WfProcess specializes the BaseProcess interface.

interface BaseProcess : BaseBusinessObject {};

2.16.4 BaseBusinessEvent

BaseBusinessEvent represents a business event object. WfEventAudit specializes
BaseBusinessEvent.

2-74 Joint Workflow Management Facility - Revised Submission 7/4/98

2

interface BaseBusinessEvent : BaseBusinessObject {};

2.17 BaseIterator

The BaseIterator interface is used to navigate relationships of cardinality greater than
1 in this specification. It supports specification of a filter using parametrized query
expressions.

2.17.1 IDL

interface BaseIterator {

string query_expression()
raises(BaseException);

void set_query_expression(
in string query)
raises(BaseException, InvalidQuery);

NameValueSequence names_in_expression()
raises(BaseException);

void set_names_in_expression(
in NameValueSequence query)
raises(BaseException, InvalidNames);

string query_grammar()
raises(BaseException);

void set_query_grammar(
in string query_grammmar)
raises(BaseException, GrammarNotSupported);

long how_many ()
raises(BaseException);

void goto_start()
raises(BaseException);

void goto_end()
raises(BaseException);

};

2.17.2 Attributes

query_expression

Defines the query expression used to filter the contents of the iterator.

7/4/98 Joint Workflow Management Facility - Revised Submission 2-75

2

names_in_expression

Defines a set of parameters that used to substitute variables in the query_expression.
The parameters are defined by name-value pairs, where the name identifies the
variable and the value represents the variable value to be substituted.

query_grammar

The query_grammar attribute identifies the query grammar used to define the query
expression. The Constraint Language defined by the OMG Object Trading Service is
used as the mandatory query grammar in this specification; implementations of the
WfM Facility may support additional query grammars. The Trader Constraint
Language is identified via the string TCL.

For each workflow object, the set of attributes that can be used as property identifiers
in queries on sets the specific object type is identified in the corresponding sections
above.

2.17.3 Operations

how_many

Returns the number of elements in the collection.

goto_start

Positions the iterator such that the next "next" retrieval will retrieve the first element in
the collection.

goto_end

Positions the iterator such that the next "previous" retrieval will retrieve the last
element in the collection.

2-76 Joint Workflow Management Facility - Revised Submission 7/4/98

2

2.18 Interface Usage Example

The following object interaction diagram shows one possible set of interactions that
illustrate the enactment of a process from creation through completion.

PM1 : W f P rocessMgrR1 : W f R equester P1 : W f P rocess A1 : W f A c t iv ity R x : W fR esou rce A x : W f A s s ignm ent

1: create_process(W f R equester) 2: crea t e

3: get_c ontex t_ in fo

4: get_resul t_inf o

8: internal_create

9 : se t_contex t

12: internal_start

19: internal_com plete

13: accept

14: se t_ status(acc epted)

15: create_relat ionship

17: comple te

20: reciev e_ev ent(com plete)

21: get_ re sult

16: set_re sult

18 : in ternal_set_resu l t

5 :

6 : se t_contex t

7: s tar t

10: int erna l_cr ea t e (po ten t ia l)

11: create_relat ionship

7/4/98 Joint Workflow Management Facility - Revised Submission 2-77

2

Figure 2-3 Process Creation to Completion Object Interaction Diagram

In this example, a WfProcess is created by an application implementing the
WfRequester interface; an appropriate WfProcessMgr is identified and the WfProcess
is created using the create_process operation on this process manager. The process
manager creates a new WfProcess and returns a reference to the requester.

The requester retrieves information about the signature of the process using the
get_context_info and get_result_info operations on the process manager and uses the
information on the structure of the process context to initialize the process context
using the set_context operation on the WfProcess.

Next, the requester initiates enactment of the process using the start operation of the
WfProcess; as a result, the process determines the activities to be activated (in our
example it is only one, there might be more), creates a WfActivity that represents the
first step in the process and sets the context of that activity using the data that were
provided during initialization of the process and potentially additional information.

In this scenario, the WfActivity then establishes an association with a WfResource that
can potentially perform the work request represented by the activity. The association is
establish be creating a WfAssignment which establishes an association with an
appropriate resource using internal knowledge about resource selection. Note that it
could use, for example, a resource selection WfProcess to perform this task; the
resource selection mechanism is not subject of this specification. Note also that instead
of assigning the activity to a resource, the activity could also be realized by another
workflow process which essentially performs the same operations that are performed
by the resource in our scenario.

Next, the process starts the activity and the potential assignment is changed into an
’actual’ one because the resource decided to accept the assignment (and changed the
state of the assignment accordingly).

Then, the resource (or some application) performs the work request represented by the
activity, returns the result to the activity and invokes the complete operation on the
activity to signal that the task has been completed.

The activity informs the process about the status change and passes the result on for
further processing by the process. The process could use the information to determine
the next activities to be activated; in our example, however, the process decides that
the work is done and signals completion to its requester using the result of the activity
to determine the overall process result.

The requester receives the process completion notification and retrieves the process
result using the get_result operation on the process.

3-78 Joint Workflow Management Facility - Revised Submission 7/4/98

3

Additional Information 3

3.1 Summary of Optional versus Mandatory Interfaces

All interfaces, at each compliance level, are mandatory.

3.2 Proposed Compliance Points

All implementations of this specification require that interfaces be implemented in a
CORBA environment and can be invoked through the Internet Inter-Operability
Protocol (IIOP). Operations are to be invoked in a transactional context and the effects
of those operations will be made persistent or rolled back through commit or rollback
of associated transactional resources.

The levels of compliance described below recognize that legacy or otherwise
incompatible systems may provide lesser levels of compliance which still provide
value.

Base Level

Provides interfaces for requesting and obtaining status of a process.

• Provides the WfProcessMgr and WfProcess interfaces

• Responds to the WfRequester interface.

Master process

Invokes other processes through the requester-process protocol.

• Provides activities with the WfRequester interface.

• Can invoke external processes through the WfProcessMgr and WfProcess
interfaces.

Full compliance

All interfaces defined in this specification are supported as defined with the exception
of the ’FRAMEWORK_SUPPORT’ version of the BaseBusinessObject.

Framework compliance

All interfaces, including the ’FRAMEWORK_SUPPORT’ version of the
BaseBusinessObject, are supported.

7/4/98 Joint Workflow Management Facility - Revised Submission 3-79

3

3.3 Changes or Extensions to Adopted OMG Specifications

There are no specific changes or extensions to adopted OMG specifications.

3.4 Complete IDL Definitions

The following lists the complete IDL for the proposed Workflow Management
Facility.

3.4.1 Consolidated IDL

module WfBase {

// DataTypes

struct NameValueInfo{
string attribute_name;
string type_name;

};
typedef sequence<NameValueInfo> NameValueInfoSequence;
struct NameValue{

string the_name;
any the_value;

};
typedef sequence <NameValue> NameValueSequence;
typedef sequence <string> NameSequence;
struct BaseError {

long exception_code;
string exception_source;
any exception_object;
string exception_reason;

};
typedef sequence <BaseError> BaseErrorSequence;

// Exceptions

exception BaseException {
BaseErrorSequence errors;

};
exception InvalidNames{};
exception InvalidQuery{};
exception GrammarNotSupported{};

// Interfaces

#idef FRAMEWORK_SUPPORT

interface BaseBusinessObject :
CosTransactions :: TransactionalObject,

3-80 Joint Workflow Management Facility - Revised Submission 7/4/98

3

CosObjectIdentity :: IdentifiableObject,
CosNotifyComm :: StructuredPushSupplier,
CosLifeCycle :: LifeCycleObject {};

#else
 typedef Object BaseBusinessObject;
#endif

interface BaseEntity : BaseBusinessObject {};
interface BaseProcess : BaseBusinessObject {};
interface BaseBusinessEvent : BaseBusinessObject {};

interface BaseIterator {

string query_expression()
raises(BaseException);

void set_query_expression(
in string query)
raises(BaseException, InvalidQuery);

NameValueSequence names_in_expression()
raises(BaseException);

void set_names_in_expression(
in NameValueSequence query)
raises(BaseException, InvalidNames);

string query_grammar()
raises(BaseException);

void set_query_grammar(
in string query_grammmar)
raises(BaseException, GrammarNotSupported);

long how_many ()
raises(BaseException);

void goto_start()
raises(BaseException);

void goto_end()
raises(BaseException);

};
};

module WorkflowModel{

// Forward declarations

interface WfExecutionObject;
interface WfProcess;
interface WfProcessIterator;
interface WfRequester;
interface WfProcessMgr;
interface WfActivity;
interface WfActivityIterator;

7/4/98 Joint Workflow Management Facility - Revised Submission 3-81

3

interface WfResource;
interface WfAssignment;
interface WfAssignmentIterator;
interface WfEventAudit;
interface WfEventAuditIterator;
interface WfCreateProcessEventAudit;
interface WfStateEventAudit;
interface WfAssignmentEventAudit;

// DataTypes

typedef sequence<WfProcess> WfProcessSequence;
typedef sequence<WfActivity> WfActivitySequence;
typedef sequence<WfAssignment> WfAssignmentSequence;
typedef sequence<WfEventAudit> WfEventAuditSequence;
typedef WfBase::NameValueInfoSequence ProcessDataInfo;
typedef WfBase::NameValueSequence ProcessData;

enum workflow_stateType{ open, closed };
enum while_openType{not_running, running };
enum why_not_runningType{ not_started, suspended };
enum how_closedType{ completed, terminated, aborted };
enum process_mgr_stateType{enabled, disabled };
enum assignment_stateType { potential, accepted };

// Exceptions

exception InvalidPerformer{};
exception InvalidState{};
exception InvalidData{};
exception TransitionNotAllowed{};
exception CannotResume{};
exception CannotSuspend{};
exception AlreadySuspended{};
exception CannotStop{};
exception NotRunning{};
exception HistoryNotAvailable{};
exception NotEnabled{};
exception AlreadyRunning{};
exception CannotStart{};
exception ResultNotAvailable{};
exception CannotComplete{};
exception NotAssigned{};
exception SourceNotAvailable{};

// Interfaces

interface WfRequester : WfBase::BaseBusinessObject{
long how_many_performer()

raises (WfBase::BaseException);
WfProcessIterator get_iterator_performer()

3-82 Joint Workflow Management Facility - Revised Submission 7/4/98

3

raises (WfBase::BaseException);
WfProcessSequence get_sequence_performer(

in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_performer(
in WfProcess member)
raises (WfBase::BaseException);

void receive_event(
in WfEventAudit event)
raises (WfBase::BaseException, InvalidPerformer);

};

interface WfExecutionObject : WfBase::BaseBusinessObject {
workflow_stateType workflow_state()

raises (WfBase::BaseException);
while_openType while_open()

raises (WfBase::BaseException);
why_not_runningType why_not_running()

raises (WfBase::BaseException);
how_closedType how_closed()

raises (WfBase::BaseException);
WfBase::NameSequence valid_states()

raises (WfBase::BaseException);
string state()

raises (WfBase::BaseException);
void change_state(

in string new_state)
raises (WfBase::BaseException, InvalidState,
TransitionNotAllowed);

string name()
raises(WfBase::BaseException);

void set_name(in string new_value)
raises (WfBase::BaseException);

string key()
raises(WfBase::BaseException);

void set_key(
in string new_value)
raises (WfBase::BaseException);

string description()
raises(WfBase::BaseException);

void set_description(
in string new_value)
raises (WfBase::BaseException);

ProcessData process_context()
raises(WfBase::BaseException);

void set_process_context(
in ProcessData new_value)
raises (WfBase::BaseException, InvalidData);

unsigned short priority()
raises(WfBase::BaseException);

void set_priority(

7/4/98 Joint Workflow Management Facility - Revised Submission 3-83

3

in unsigned short new_value)
raises (WfBase::BaseException);

void resume()
raises (WfBase::BaseException, CannotResume);

void suspend()
raises (WfBase::BaseException, CannotSuspend,
AlreadySuspended);

void terminate()
raises (WfBase::BaseException, CannotStop, NotRunning);

void abort()
raises (WfBase::BaseException, CannotStop, NotRunning);

long how_many_history()
raises (WfBase::BaseException, HistoryNotAvailable);

WfEventAuditIterator get_iterator_history()
raises (WfBase::BaseException, HistoryNotAvailable);

WfEventAuditSequence get_sequence_history(
in long max_number)
raises (WfBase::BaseException, HistoryNotAvailable);

};

interface WfProcessMgr : WfBase::BaseBusinessObject {
long how_many_process()

raises (WfBase::BaseException);
WfProcessIterator get_iterator_process()

raises (WfBase::BaseException);
WfProcessSequence get_sequence_process(

in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_process(
in WfProcess member)
raises (WfBase::BaseException);

process_mgr_stateType process_mgr_state()
raises(WfBase::BaseException);

void set_process_mgr_state(
in process_mgr_stateType new_state)
raises(WfBase::BaseException, TransitionNotAllowed);

string name()
raises(WfBase::BaseException);

void set_name(
in string new_value)
raises (WfBase::BaseException);

string description()
raises(WfBase::BaseException);

void set_description(
in string new_value)
raises (WfBase::BaseException);

string category()
raises(WfBase::BaseException);

void set_category(
in string new_value)
raises (WfBase::BaseException);

3-84 Joint Workflow Management Facility - Revised Submission 7/4/98

3

string version()
raises(WfBase::BaseException);

void set_version(
in string new_value)
raises (WfBase::BaseException);

ProcessDataInfo context_signature()
raises (WfBase::BaseException);

ProcessDataInfo result_signature()
raises (WfBase::BaseException);

WfProcess create_process(
in WfRequester requester)
raises (WfBase::BaseException, NotEnabled);

};

interface WfProcess : WfExecutionObject, WfBase::BaseProcess {
WfRequester requester()

raises(WfBase::BaseException);
void set_requester(in WfRequester new_value)

raises (WfBase::BaseException);
long how_many_step()

raises (WfBase::BaseException);
WfActivityIterator get_iterator_step()

raises (WfBase::BaseException);
WfActivitySequence get_sequence_step(

in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_step(
in WfActivity member)
raises (WfBase::BaseException);

WfProcessMgr manager()
raises(WfBase::BaseException);

ProcessData result()
raises (WfBase::BaseException, ResultNotAvailable);

void start()
raises (WfBase::BaseException, CannotStart,
AlreadyRunning);

};

interface WfProcessIterator : WfBase::BaseIterator {
WfProcess get_next_object ()

raises (WfBase::BaseException);
WfProcess get_previous_object()

raises (WfBase::BaseException);
WfProcessSequence get_next_n_sequence(

in long max_number)
raises (WfBase::BaseException);

WfProcessSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};
interface WfActivity : WfExecutionObject, WfRequester{

7/4/98 Joint Workflow Management Facility - Revised Submission 3-85

3

long how_many_assignment()
raises (WfBase::BaseException);

WfAssignmentIterator get_iterator_assignment()
raises (WfBase::BaseException);

WfAssignmentSequence get_sequence_assignment(
in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_assignment(
in WfAssignment member)
raises (WfBase::BaseException);

WfProcess container()
raises(WfBase::BaseException);

ProcessData result()
raises(WfBase::BaseException, ResultNotAvailable);

void set_result(
in ProcessData result)
raises (WfBase::BaseException, InvalidData);

void complete()
raises (WfBase::BaseException, CannotComplete);

};

interface WfActivityIterator : WfBase::BaseIterator{
WfActivity get_next_object ()

raises (WfBase::BaseException);
WfActivity get_previous_object()

raises (WfBase::BaseException);
WfActivitySequence get_next_n_sequence(

in long max_number)
raises (WfBase::BaseException);

WfActivitySequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

interface WfAssignment : WfBase::BaseEntity{
WfActivity activity()

raises(WfBase::BaseException);
WfResource assignee()

raises(WfBase::BaseException);
void set_assignee(

in WfResource new_value)
raises (WfBase::BaseException);

assignment_stateType assignment_state()
raises(WfBase::BaseException);

void set_assignment_state(
in assignment_stateType new_value)
raises (WfBase::BaseException, TransitionNotAllowed);

};

interface WfAssignmentIterator : WfBase::BaseIterator{
WfAssignment get_next_object ()

3-86 Joint Workflow Management Facility - Revised Submission 7/4/98

3

raises (WfBase::BaseException);
WfAssignment get_previous_object()

raises (WfBase::BaseException);
WfAssignmentSequence get_next_n_sequence(

in long max_number)
raises (WfBase::BaseException);

WfAssignmentSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

interface WfResource : WfBase::BaseBusinessObject{
long how_many_work_item()

raises (WfBase::BaseException);
WfAssignmentIterator get_iterator_work_item()

raises (WfBase::BaseException);
WfAssignmentSequence get_sequence_work_item(

in long max_number)
raises (WfBase::BaseException);

boolean is_member_of_work_items(
in WfAssignment member)
raises (WfBase::BaseException);

string resource_key()
raises(WfBase::BaseException);

string resource_name()
raises(WfBase::BaseException);

void release(
in WfAssignment from_assigment,
in string release_info)
raises (WfBase::BaseException, NotAssigned);

};
interface WfEventAudit : WfBase::BaseBusinessEvent{

WfExecutionObject source()
raises(WfBase::BaseException, SourceNotAvailable);

TimeBase :: UtcT timestamp()
raises(WfBase::BaseException);

string event_type()
raises(WfBase::BaseException);

string activity_key()
raises(WfBase::BaseException);

string activity_name()
raises(WfBase::BaseException);

string process_key()
raises(WfBase::BaseException);

string process_name()
raises(WfBase::BaseException);

string process_mgr_name()
raises(WfBase::BaseException);

7/4/98 Joint Workflow Management Facility - Revised Submission 3-87

3

string process_mgr_version()
raises(WfBase::BaseException);

};

interface WfEventAuditIterator : WfBase::BaseIterator{
WfEventAudit get_next_object ()

raises (WfBase::BaseException);
WfEventAudit get_previous_object()

raises (WfBase::BaseException);
WfEventAuditSequence get_next_n_sequence(

in long max_number)
raises (WfBase::BaseException);

WfEventAuditSequence get_previous_n_sequence(
in long max_number)
raises (WfBase::BaseException);

};

interface WfCreateProcessEventAudit : WfEventAudit{
string p_activity_key()

raises(WfBase::BaseException);
string p_process_key()

raises(WfBase::BaseException);
string p_process_name()

raises(WfBase::BaseException);
string p_process_mgr_name()

raises(WfBase::BaseException);
string p_process_mgr_version()

raises(WfBase::BaseException);
};

interface WfStateEventAudit : WfEventAudit {
string old_state()

raises(WfBase::BaseException);
string new_state()

raises(WfBase::BaseException);
};

interface WfDataEventAudit : WfEventAudit {
ProcessData old_data()

raises(WfBase::BaseException);
ProcessData new_data()

raises(WfBase::BaseException);
};

interface WfAssignmentEventAudit : WfEventAudit{
string old_assignment_state()

raises(WfBase::BaseException);
string old_resource_key()

raises(WfBase::BaseException);
string old_resource_name()

raises(WfBase::BaseException);

3-88 Joint Workflow Management Facility - Revised Submission 7/4/98

3

string new_assignment_state()
raises(WfBase::BaseException);

string new_resource_key()
raises(WfBase::BaseException);

string new_resource_name()
raises(WfBase::BaseException);

};
};

CDL A
The following describes the workflow model in terms of the Component Definition
Language (CDL) that is part f the proposed Business Object Component Architecture
(Boca). The specification is included to illustrate the relationship of this specification
with the Boca; it is not a normative part of the specification.

A.1 Consolidated CDL

#include <BocaFramework.cdl>
collection_kind Manager {};
#define ReducedIdl

module WorkflowModel {
 //Forward references
 business_object WfExecutionObject;
 process WfProcess;
 business_object WfActivity;
 business_event WfEventAudit;

 struct DataInfoType {
 string attribute_name;
 string type_name;
 };

 typedef sequence<DataInfoType> ProcessDataInfo;

 struct NameValue {
 string aname;
 any avalue;
 };

 typedef sequence<NameValue> ProcessData;

 //Forward references
 business_object WfProcessMgr;

7/4/98 Joint Workflow Management Facility - Revised Submission 3-89

3

 business_object WfExecutionObject;
 process WfProcess;
 business_object WfActivity;
 business_object WfRequester;
 business_event WfEventAudit;
 business_object WfResource;
 entity WfAssignment;

 [is_abstract]
 business_object WfRequester {
 [is_read_only]
 relationship performer Many WfProcess inverse requester;
 // Operations invoked from related workflows
 void receive_event(in WfEventAudit event);
 };

 [is_abstract]
 business_object WfProcessMgr {
 exception NotEnabled {};

 [is_read_only]
 relationship process Aggregates WfProcess inverse manager;

 WfProcess create_process (in WfRequester requester)
raises (NotEnabled);

 [is_read_only] attribute boolean enabled;
 [is_read_only] attribute string name;
 [is_read_only] attribute string description;
 [is_read_only] attribute string category;
 [is_read_only] attribute string version;

 ProcessDataInfo get_context_signature();
 ProcessDataInfo get_result_signature();
 };

 [is_abstract, keys={key}]
 business_object WfExecutionObject {
 exception CannotSuspend {};
 exception AlreadySuspended {};
 exception CannotStop {};
 exception NotRunning {};
 exception CannotResume {};
 exception InvalidState {};

 // Workflow state model
 state_set workflow_state { open, closed };
 during (open) {
 state_set while_open { not_running, running };
 during (not_running) {
 state_set why_not_running { not_started, suspended };

3-90 Joint Workflow Management Facility - Revised Submission 7/4/98

3

 during (suspended) {
 signal resume()raises (CannotResume);
 };
 };
 during (running) {
 signal suspend() raises (CannotSuspend, CurrentlySuspended);
 };
 signal terminate() raises (CannotStop, NotRunning);
 signal abort() raises (CannotStop, NotRunning);
 };
 during (closed) {
 state_set how_closed {completed, terminated, aborted };
 };

 // Attributes
 attribute string name;
 [is_read_only] attribute string key;
 attribute string description;
 attribute ProcessData process_context;
 //[annotation="Lower numbers have greater priority"]
 [constraint=((priority>=1) && (priority<=5))]
 attribute unsigned short priority = 3;
 [is_read_only] attribute valid_states;

 [is_read_only]
 relationship history Aggregates WfEventAudit inverse source;

 // Dynamic state transitions
 [is_query]
 string get_current_state();
 void change_state(in string new_state) raises (InvalidState);

 // Rules
 apply StateTransitionRule terminate_trans {
 trigger = {terminate};
 source = open;
 target = terminated;
 };
 apply StateTransitionRule abort_trans {
 trigger = {abort};
 source = open;
 target = aborted;
 };
 apply StateTransitionRule suspend_trans {
 trigger = {suspend};
 source = running;
 target = suspended;
 };
 apply StateTransitionRule resume_trans {

7/4/98 Joint Workflow Management Facility - Revised Submission 3-91

3

 trigger = {resume};
 source = suspended;
 target = running;
 };
 };

 [is_abstract]
 process WfProcess : WfExecutionObject {
 exception CannotStart {};
 exception AlreadyRunning {};
 exception ResultNotAvailable {};

 [INITIALIZED]
 relationship requester References 1..1 WfRequester inverse performer;
 [is_read_only]
 relationship step Aggregates WfActivity inverse container;
 relationship manager IsPartOf WfProcessMgr inverse process;

 signal start() raises(CannotStart,AlreadyRunning);

 ProcessData get_result() raises(ResultNotAvailable);

 // Rules
 apply StateTransitionRule start_trans {
 trigger = {start};
 source = not_running;
 target = running;
 };
 };

 [is_abstract]
 business_object WfActivity : WfExecutionObject, WfRequester {

 exception CannotComplete {};

 [is_read_only]
 relationship assignment Aggregates WfAssignment inverse activity;
 [is_read_only]
 relationship container IsPartOf WfProcess inverse step;

 void set_result(in NameValues result);

 signal complete() raises(CannotComplete);

 apply StateTransitionRule complete_trans {
 trigger = {complete};
 source = open;
 target = completed;
 };
 };

3-92 Joint Workflow Management Facility - Revised Submission 7/4/98

3

 // treat status as a state rather than enum
 enum /*state_set*/ assignment_state { potential, accepted };

 [keys={activity, assignee}, is_abstract]
 entity WfAssignment {
 exception InvalidResource {};

 [is_read_only, INITIALIZED]
 relationship activity IsPartOf WfActivity inverse assignment;
 relationship assignee References 1..1 WfResource inverse work_item;
 attribute assignment_state assignment_state;

 // create new relationship to a different resource
 void reassign (in WfResource new_resource,
 in AssignmentStatus new_status) raises(InvalidResource);
 };

 typedef sequence<WfAssignment> WfAssignmentSequence;

 [keys={resource_key},is_abstract]
 business_object WfResource {
 [is_read_only]
 relationship work_item Many WfAssignment inverse assignee;

 attribute string resource_key;
 attribute string resource_name;

 // Inform resource that the workflow no longer needs it
 void release(in WfAssignment from_assigment
 in string release_info);
 };

 [FROZEN, is_abstract]
 business_event WfEventAudit {
 [is_read_only] relationship source IsPartOf WfExecutionObject;
 readonly attribute TimeBase::UtcT timestamp;
 readonly attribute string event_type;
 readonly attribute string activity_key;
 readonly attribute string activity_name ;
 readonly attribute string process_key ;
 readonly attribute string process_mgr_name;
 readonly attribute string process_mgr_version;
 readonly attribute string domain_id; // BSD of source
 };

 [is_abstract]
 business_event WfCreateProcessEventAudit : WfEventAudit {
 readonly attribute string activity_key;
 readonly attribute string process_key ;
 readonly attribute string process_mgr_name;
 readonly attribute string process_mgr_version;

7/4/98 Joint Workflow Management Facility - Revised Submission 3-93

3

 readonly attribute string domain_id; // BSD of parent
 };

 [is_abstract]
 business_event WfStateEventAudit : WfEventAudit {
 readonly attribute string old_state;
 readonly attribute string new_state;
 };

 [is_abstract]
 business_event WfDataEventAudit : WfEventAudit {
 readonly attribute ProcessData old_data;
 readonly attribute ProcessData new_data;
 };

 [is_abstract]
 business_event WfAssignmentEventAudit : WfEventAudit {

readonly attribute string old_assignment_state;
readonly attribute string old_resource_key;
readonly attribute string old_resource_name;
readonly attribute string new_assignment_state;
readonly attribute string new_resource_key;
readonly attribute string new_resource_name;

 };
}; // End - Workflow

